<div class="csl-bib-body">
<div class="csl-entry">Geismann, M. (2020). <i>Quasi-normal mode expansion of the scattering matrix</i> [Diploma Thesis, Technische Universität Wien]. reposiTUm. https://doi.org/10.34726/hss.2020.75404</div>
</div>
-
dc.identifier.uri
https://doi.org/10.34726/hss.2020.75404
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/1154
-
dc.description
Abweichender Titel nach Übersetzung der Verfasserin/des Verfassers
-
dc.description.abstract
Scattering problems in classical electrodynamics or quantum mechanics are characterised through the scattering matrix (S-matrix). For complex scenarios the underlying differential equations can only be solved numerically combined with an immense computational effort. Thus, calculating the S-matrix through these solutions is costly. Furthermore, the numerical routines hide the innerworkings of the studied problem. However, the discovery of so-called Quasi-Normal Modes (QNMs) and their connection to poles and zeros of the S-matrix indicate the existence of an expansion solely dependent on the asymptotic behaviour of these QNMs. Such an expansion would not only reconstruct the S-matrix faster, but also allow a more qualitative understanding of the scattering problem. This thesis continues previous work [1] by taking the last steps towards a full expansion of the scattering matrix in terms of QNMs and investigates its application to a selection of scattering systems.[1] F. Salihbegovic, “Reconstructing the Scattering Matrix Using the Quasi-Bound States,” Masters thesis, TU Wien, 2018.
en
dc.language
English
-
dc.language.iso
en
-
dc.rights.uri
http://rightsstatements.org/vocab/InC/1.0/
-
dc.subject
Streumatrix
de
dc.subject
Quasi-gebundene Zustände
de
dc.subject
Scattering matrix
en
dc.subject
quasi-normal modes
en
dc.title
Quasi-normal mode expansion of the scattering matrix
en
dc.title.alternative
Entwicklung der Streumatrix anhand Quasi-Gebundener Zustände
de
dc.type
Thesis
en
dc.type
Hochschulschrift
de
dc.rights.license
In Copyright
en
dc.rights.license
Urheberrechtsschutz
de
dc.identifier.doi
10.34726/hss.2020.75404
-
dc.contributor.affiliation
TU Wien, Österreich
-
dc.rights.holder
Maximilian Geismann
-
dc.publisher.place
Wien
-
tuw.version
vor
-
tuw.thesisinformation
Technische Universität Wien
-
tuw.publication.orgunit
E136 - Institut für Theoretische Physik
-
dc.type.qualificationlevel
Diploma
-
dc.identifier.libraryid
AC15665947
-
dc.description.numberOfPages
70
-
dc.identifier.urn
urn:nbn:at:at-ubtuw:1-138834
-
dc.thesistype
Diplomarbeit
de
dc.thesistype
Diploma Thesis
en
dc.rights.identifier
In Copyright
en
dc.rights.identifier
Urheberrechtsschutz
de
tuw.advisor.staffStatus
staff
-
tuw.advisor.orcid
0000-0002-4123-1417
-
item.languageiso639-1
en
-
item.openairetype
master thesis
-
item.grantfulltext
open
-
item.fulltext
with Fulltext
-
item.cerifentitytype
Publications
-
item.mimetype
application/pdf
-
item.openairecristype
http://purl.org/coar/resource_type/c_bdcc
-
item.openaccessfulltext
Open Access
-
crisitem.author.dept
E354 - Electrodynamics, Microwave and Circuit Engineering
-
crisitem.author.parentorg
E350 - Fakultät für Elektrotechnik und Informationstechnik