Hinweis
Dieser Eintrag wurde automatisch aus einem Altsystem migriert. Die Daten wurden nicht überprüft und entsprechen eventuell nicht den Qualitätskriterien des vorliegenden Systems.
Kitzler, G., & Schöberl, J. (2012). A high order discontinuous Galerkin method for the Boltzmann Equation. 25th FEM Symposium Chemnitz, TU Chemnitz, EU. http://hdl.handle.net/20.500.12708/120139
E101-03 - Forschungsbereich Scientific Computing and Modelling
-
Datum (veröffentlicht):
2012
-
Veranstaltungsname:
25th FEM Symposium Chemnitz
-
Veranstaltungszeitraum:
24-Sep-2012 - 26-Sep-2012
-
Veranstaltungsort:
TU Chemnitz, EU
-
Abstract:
A high order discontinuous Galerkin method for the
Boltzmann Equation
Gerhard Kitzler1 Joachim Sch oberl2
The Boltzmann equation is a statistical model for gases. The density distribution
function f(t; x; v) describes the propability to nd a particle at time t near the spatial
position x and which has the velocity close to v. The time evolution of f is given by
the Boltzmann equation. The co...
A high order discontinuous Galerkin method for the
Boltzmann Equation
Gerhard Kitzler1 Joachim Sch oberl2
The Boltzmann equation is a statistical model for gases. The density distribution
function f(t; x; v) describes the propability to nd a particle at time t near the spatial
position x and which has the velocity close to v. The time evolution of f is given by
the Boltzmann equation. The collision of particles is formulated in terms of the collision
operator Q(f) which is local in x and t. We perform a Petrov-Galerkin method in the
spatial domain
and velocity domain R3. In the v domain the solution is expanded as a
sum over multivariate Lagrange polynomials lj(x) times an appropriate gaussian peak. In
space we discretize by a high order discontinuous Galerkin method with natural upwind
uxes.
Due to this expansion, the Boltzmann transport operator decouples when using Gau -
Hermite integration rules of appropriate order into transport operators for the individual
components.
1