Title: | Asymptotic symmetry algebras in non-Anti-de-Sitter higher-spin gauge theories | Language: | English | Authors: | Riegler, Max | Qualification level: | Diploma | Keywords: | Höhere-Spin Gravitation; Gravitation in drei Dimensionen; nicht-AdS Holographie; W-Algebren; Eichtheorie-Graviation Dualität higher spin gravity; gravity in three dimensions; non-AdS holography; W-algebras; gauge-gravity duality |
Advisor: | Grumiller, Daniel | Issue Date: | 2012 | Number of Pages: | 48 | Qualification level: | Diploma | Abstract: | In dieser Masterarbeit befassen wir uns mit einer bestimmten Höhere-Spin Gravitationstheorie in 2+1 Dimensionen. Wir führen eine kanonische Analyse durch und stellen konsistente Randbedingen vor, welche von den dynamischen Feldern der Theorie erfüllt werden müssen. Weiters bestimmten wir die klassische und quantisierte Symmetriealgebra der daraus resultierenden holographischen Quantenfeldtheorie am Rande der Raumzeit und versuchen sie physikalisch zu interpretieren. We analyze asymptotic symmetry algebras in (2+1)-dimensional non-AdS higher-spin gravity with a focus on a specific spacetime. We find a consistent set of boundary conditions for spin-3 gravity in the non-principal embedding and calculate the corresponding asymptotic symmetry algebra in the classical and quantum mechanical case. In addition, we check for unitary representations of the resulting quantum Polyakov-Bershadsky algebra and give an interpretation of the corresponding CFT. |
URI: | https://resolver.obvsg.at/urn:nbn:at:at-ubtuw:1-60138 http://hdl.handle.net/20.500.12708/12912 |
Library ID: | AC07814162 | Organisation: | E136 - Institut für Theoretische Physik | Publication Type: | Thesis Hochschulschrift |
Appears in Collections: | Thesis |
Files in this item:
File | Description | Size | Format | |
---|---|---|---|---|
Asymptotic symmetry algebras in non-Anti-de-Sitter higher-spin gauge theories.pdf | 491.17 kB | Adobe PDF | ![]() View/Open |
Page view(s)
11
checked on Feb 18, 2021
Download(s)
66
checked on Feb 18, 2021

Google ScholarTM
Check
Items in reposiTUm are protected by copyright, with all rights reserved, unless otherwise indicated.