<div class="csl-bib-body">
<div class="csl-entry">Bors, C. (2019). <i>Facilitating data quality assessment utilizing visual analytics: tackling time, metrics, uncertainty, and provenance</i> [Dissertation, Technische Universität Wien]. reposiTUm. https://doi.org/10.34726/hss.2019.76147</div>
</div>
-
dc.identifier.uri
https://doi.org/10.34726/hss.2019.76147
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/1340
-
dc.description.abstract
Visual and interactive data analysis is a large field of research that is successfully used in commercial tools and systems to allow analysts make sense of their data. Data is often riddled with issues, which makes analysis difficult or even not feasible. Pre-processing data for downstream analysis also involves resolving these issues. We may employ Visual Analytics methods to identify and correct issues and eventually wrangle the data into a usable format. Various aspects are critical during issue correction: (1) how are the issues resolved, (2) to what extent did this affect the dataset, and (3) did the used routines actually resolve the issues appropriately. In this thesis I employ data quality metrics and uncertainty to capture provenance from pre-processing operations and pipelines. Data quality metrics are used to show the prevalence of errors in a dataset, and uncertainty can quantify the changes applied to a data values and entries during processing. Capturing such measures as provenance and visualizing it in an exploratory environment can allow analysts to determine how pre-processing steps affected a dataset, and if the issues, that were initially discovered, could be resolved in a minimal way, so the data is representative of the original dataset. Within the course of this thesis I employed a user-centered design methodology to develop Visual Analytics prototypes and visualization techniques that combine techniques from data quality, provenance, and uncertainty research.
en
dc.language
English
-
dc.language.iso
en
-
dc.rights.uri
http://rightsstatements.org/vocab/InC/1.0/
-
dc.subject
data quality assessment
en
dc.subject
provenance
en
dc.subject
metrics
en
dc.subject
visual analytics
en
dc.subject
uncertainty
en
dc.title
Facilitating data quality assessment utilizing visual analytics: tackling time, metrics, uncertainty, and provenance
en
dc.title.alternative
Ein Visual Analytics Ansatz zur Datenqualitäts-Beurteilung mit Hilfe von Zeit, Metriken, Unsicherheiten und Provenienz
de
dc.type
Thesis
en
dc.type
Hochschulschrift
de
dc.rights.license
In Copyright
en
dc.rights.license
Urheberrechtsschutz
de
dc.identifier.doi
10.34726/hss.2019.76147
-
dc.contributor.affiliation
TU Wien, Österreich
-
dc.rights.holder
Christian Bors
-
dc.publisher.place
Wien
-
tuw.version
vor
-
tuw.thesisinformation
Technische Universität Wien
-
tuw.publication.orgunit
E193 - Institut für Visual Computing and Human-Centered Technology
-
dc.type.qualificationlevel
Doctoral
-
dc.identifier.libraryid
AC15622872
-
dc.description.numberOfPages
231
-
dc.identifier.urn
urn:nbn:at:at-ubtuw:1-136168
-
dc.thesistype
Dissertation
de
dc.thesistype
Dissertation
en
tuw.author.orcid
0000-0001-8119-7025
-
dc.rights.identifier
In Copyright
en
dc.rights.identifier
Urheberrechtsschutz
de
tuw.advisor.staffStatus
staff
-
tuw.advisor.orcid
0000-0003-4427-5703
-
item.languageiso639-1
en
-
item.openairetype
doctoral thesis
-
item.grantfulltext
open
-
item.fulltext
with Fulltext
-
item.cerifentitytype
Publications
-
item.mimetype
application/pdf
-
item.openairecristype
http://purl.org/coar/resource_type/c_db06
-
item.openaccessfulltext
Open Access
-
crisitem.author.dept
E193-07 - Forschungsbereich Visual Analytics
-
crisitem.author.orcid
0000-0001-8119-7025
-
crisitem.author.parentorg
E193 - Institut für Visual Computing and Human-Centered Technology