<div class="csl-bib-body">
<div class="csl-entry">Besau, F., Rosen, D., & Thäle, C. (2021). Random inscribed polytopes in projective geometries. <i>Mathematische Annalen</i>, <i>381</i>(3–4), 1345–1372. https://doi.org/10.1007/s00208-021-02257-9</div>
</div>
-
dc.identifier.issn
0025-5831
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/138310
-
dc.description.abstract
We establish central limit theorems for natural volumes of random inscribed polytopes in projective Riemannian or Finsler geometries. In addition, normal approximation of dual volumes and the mean width of random polyhedral sets are obtained. We deduce these results by proving a general central limit theorem for the weighted volume of the convex hull of random points chosen from the boundary of a smooth convex body according to a positive and continuous density in Euclidean space. In the background are geometric estimates for weighted surface bodies and a Berry–Esseen bound for functionals of independent random variables.
en
dc.language.iso
en
-
dc.publisher
Springer
-
dc.relation.ispartof
Mathematische Annalen
-
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
-
dc.subject
central limit theorem
en
dc.subject
Hilbert geometry
en
dc.subject
random convex body
en
dc.subject
stochastic approximation
en
dc.subject
volume of a convex body
en
dc.title
Random inscribed polytopes in projective geometries