Buffa, A., Gantner, G., Giannelli, C., Praetorius, D., & Vázquez, R. (2022). Mathematical Foundations of Adaptive Isogeometric Analysis. Archives of Computational Methods in Engineering, 29, 4479–4555. https://doi.org/10.1007/s11831-022-09752-5
This paper reviews the state of the art and discusses recent developments in the field of adaptive isogeometric analysis, with special focus on the mathematical theory. This includes an overview of available spline technologies for the local resolution of possible singularities as well as the state-of-the-art formulation of convergence and quasi-optimality of adaptive algorithms for both the finite element method and the boundary element method in the frame of isogeometric analysis.
en
Project title:
Optimale isogeometrische Randelementmethoden: P 29096-N32 (Fonds zur Förderung der wissenschaftlichen Forschung (FWF)) Doktoratskolleg "Dissipation and Dispersion in Nonlinear Partial Differential Equations": W1245-N25 (Fonds zur Förderung der wissenschaftlichen Forschung (FWF)) Analytische und numerische Koppelung im Mikromagnetismus: F 6509-N36 (Fonds zur Förderung der wissenschaftlichen Forschung (FWF)) Optimale Adaptivität für Raum-Zeit Methoden: J 4379-N (Fonds zur Förderung der wissenschaftlichen Forschung (FWF))