<div class="csl-bib-body">
<div class="csl-entry">Keglevic, M. (2022). <i>Learning image similarities from forensic evidence</i> [Dissertation, Technische Universität Wien]. reposiTUm. https://doi.org/10.34726/hss.2023.108383</div>
</div>
-
dc.identifier.uri
https://doi.org/10.34726/hss.2023.108383
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/139678
-
dc.description
Zusammenfassung in deutscher Sprache
-
dc.description.abstract
Forensic evidence, such as toolmarks, footwear impressions, and handwritten documents treated in this thesis, is crucial to solving criminal cases. Even though such forensic evidence is meticulously collected and digitalized, a manual search for matching evidence from different cases in an archive of hundreds to thousands of images is time-consuming. Therefore, this thesis presents a methodology for comparing and retrieving forensic images using automatic analysis of image similarities. In contrast to other image analysis tasks, like object classification, for forensic images, fine- grained local characteristics are crucial since they can uniquely identify the ob- ject or person that has left behind a trace on the crime scene. For toolmarks and footwear impressions, such characteristics occur, for example, due to damages or wear. Since they have the potential to yield the highest evidential strength, such individual characteristics are the most powerful during an examination. The proposed methodology facilitates metric learning to learn a similarity measure that is specific for each forensic domain addressed. This approach allows efficient comparison of local characteristics in a learned embedding space. In order to utilize the available data more effectively and provide a mechanism to enforce domain-specific constraints, methods for modeling the global context by combining local characteristics are presented. The proposed methodology is evaluated using datasets from the three exem- plary forensic image modalities addressed, i.e., toolmarks, footwear impressions, and handwritings. Further, two new publicly available datasets are presented, explicitly designed to train and evaluate learning-based methods for retrieving forensic toolmark images and footwear impressions.
en
dc.language
English
-
dc.language.iso
en
-
dc.rights.uri
http://rightsstatements.org/vocab/InC/1.0/
-
dc.subject
Deep Learning
en
dc.subject
Machine Learning
en
dc.subject
Metric Learning
en
dc.subject
Computer Vision
en
dc.subject
Image Processing
en
dc.subject
Forensics
en
dc.title
Learning image similarities from forensic evidence
en
dc.type
Thesis
en
dc.type
Hochschulschrift
de
dc.rights.license
In Copyright
en
dc.rights.license
Urheberrechtsschutz
de
dc.identifier.doi
10.34726/hss.2023.108383
-
dc.contributor.affiliation
TU Wien, Österreich
-
dc.rights.holder
Manuel Keglevic
-
dc.publisher.place
Wien
-
tuw.version
vor
-
tuw.thesisinformation
Technische Universität Wien
-
tuw.publication.orgunit
E193 - Institut für Visual Computing and Human-Centered Technology
-
dc.type.qualificationlevel
Doctoral
-
dc.identifier.libraryid
AC16736614
-
dc.description.numberOfPages
158
-
dc.thesistype
Dissertation
de
dc.thesistype
Dissertation
en
tuw.author.orcid
0000-0002-4644-2723
-
dc.rights.identifier
In Copyright
en
dc.rights.identifier
Urheberrechtsschutz
de
tuw.advisor.staffStatus
staff
-
tuw.advisor.orcid
0000-0003-4195-1593
-
item.languageiso639-1
en
-
item.openairetype
doctoral thesis
-
item.grantfulltext
open
-
item.fulltext
with Fulltext
-
item.cerifentitytype
Publications
-
item.mimetype
application/pdf
-
item.openairecristype
http://purl.org/coar/resource_type/c_db06
-
item.openaccessfulltext
Open Access
-
crisitem.author.dept
E193-01 - Forschungsbereich Computer Vision
-
crisitem.author.orcid
0000-0002-4644-2723
-
crisitem.author.parentorg
E193 - Institut für Visual Computing and Human-Centered Technology