DC FieldValueLanguage
dc.contributor.advisorDrmota, Michael-
dc.contributor.authorGutenbrunner, Georg-
dc.date.accessioned2020-06-30T21:19:07Z-
dc.date.issued2004-
dc.identifier.urihttps://resolver.obvsg.at/urn:nbn:at:at-ubtuw:1-9181-
dc.identifier.urihttp://hdl.handle.net/20.500.12708/14278-
dc.descriptionZsfassung in dt. Sprache-
dc.description.abstractLet $K$ be a finite field and $Q\in K[T]$ a polynomial of positive degree. A function $f$ on $K[T]$ is called (completely) $Q$-additive if $f(A+BQ)=f(A)+f(B)$, where $A,B\in K[T]$ and $\deg(A)<\deg(Q)$.<br />We prove that the values $(f_1(A),\ldots,f_d(A))$ are asymptotically equidistributed on the (finite) image set $\{(f_1(A),\ldots,f_d(A)) :<br />A\in K[T]\}$ if $Q_j$ are pairwise coprime and $f_j : K[T] o K[T]$ are $Q_j$-additive. Furthermore, it is shown that $(g_1(A),g_2(A))$ are asymptotically independent and Gaussian if $g_1,g_2: K[T] o \R$ are $Q_1$- resp. $Q_2$-additive.de
dc.formatV, 71 Bl.-
dc.languageEnglish-
dc.language.isoen-
dc.subjectAdditive Funktionde
dc.subjectVerallgemeinerungde
dc.subjectPolynomringde
dc.subjectGalois-Feldde
dc.subjectWahrscheinlichkeitsverteilungde
dc.titleThe joint distribution of Q-additive functions on polynomials over finite fieldsen
dc.typeThesisen
dc.typeHochschulschriftde
dc.contributor.assistantGrabner, Peter-
tuw.publication.orgunitE104 - Institut für Diskrete Mathematik und Geometrie-
dc.type.qualificationlevelDoctoral-
dc.identifier.libraryidAC04223187-
dc.description.numberOfPages71-
dc.identifier.urnurn:nbn:at:at-ubtuw:1-9181-
dc.thesistypeDissertationde
dc.thesistypeDissertationen
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextwith Fulltext-
item.openaccessfulltextOpen Access-
item.cerifentitytypePublications-
item.cerifentitytypePublications-
item.grantfulltextopen-
item.openairetypeThesis-
item.openairetypeHochschulschrift-
Appears in Collections:Thesis

Files in this item:


Page view(s)

32
checked on Sep 5, 2021

Download(s)

110
checked on Sep 5, 2021

Google ScholarTM

Check


Items in reposiTUm are protected by copyright, with all rights reserved, unless otherwise indicated.