DC FieldValueLanguage
dc.contributor.authorGutenbrunner, Georg-
dc.date.accessioned2020-06-30T21:19:07Z-
dc.date.issued2004-
dc.identifier.urihttps://resolver.obvsg.at/urn:nbn:at:at-ubtuw:1-9181-
dc.identifier.urihttp://hdl.handle.net/20.500.12708/14278-
dc.descriptionZsfassung in dt. Sprache-
dc.description.abstractLet $K$ be a finite field and $Q\in K[T]$ a polynomial of positive degree. A function $f$ on $K[T]$ is called (completely) $Q$-additive if $f(A+BQ)=f(A)+f(B)$, where $A,B\in K[T]$ and $\deg(A)<\deg(Q)$.<br />We prove that the values $(f_1(A),\ldots,f_d(A))$ are asymptotically equidistributed on the (finite) image set $\{(f_1(A),\ldots,f_d(A)) :<br />A\in K[T]\}$ if $Q_j$ are pairwise coprime and $f_j : K[T] o K[T]$ are $Q_j$-additive. Furthermore, it is shown that $(g_1(A),g_2(A))$ are asymptotically independent and Gaussian if $g_1,g_2: K[T] o \R$ are $Q_1$- resp. $Q_2$-additive.de
dc.formatV, 71 Bl.-
dc.languageEnglish-
dc.language.isoen-
dc.subjectVerallgemeinerungde
dc.subjectPolynomringde
dc.subjectGalois-Feldde
dc.subjectWahrscheinlichkeitsverteilungde
dc.titleThe joint distribution of Q-additive functions on polynomials over finite fieldsen
dc.typeThesisen
dc.typeHochschulschriftde
dc.contributor.assistantGrabner, Peter-
tuw.publication.orgunitE104 - Institut für Diskrete Mathematik und Geometrie-
dc.type.qualificationlevelDoctoral-
dc.identifier.libraryidAC04223187-
dc.description.numberOfPages71-
dc.identifier.urnurn:nbn:at:at-ubtuw:1-9181-
dc.thesistypeDissertationde
dc.thesistypeDissertationen
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextwith Fulltext-
item.openaccessfulltextOpen Access-
item.cerifentitytypePublications-
item.cerifentitytypePublications-
item.grantfulltextopen-
item.openairetypeThesis-
item.openairetypeHochschulschrift-
Appears in Collections:Thesis

### Files in this item:

#### Page view(s)

32
checked on Sep 5, 2021