<div class="csl-bib-body">
<div class="csl-entry">Fertl, L., & Bura, E. (2022). The ensemble conditional variance estimator for sufficient dimension reduction. <i>Electronic Journal of Statistics</i>, <i>16</i>(1), 1595–1634. https://doi.org/10.1214/22-EJS1994</div>
</div>
-
dc.identifier.issn
1935-7524
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/144310
-
dc.description.abstract
Ensemble Conditional Variance Estimation (ECVE) is a novel sufficient dimension reduction (SDR) method in regressions with continuous response and predictors. ECVE applies to general non-additive error regression models and operates under the assumption that the predictors can be replaced by a lower dimensional projection without loss of information. It is a semiparametric forward regression model-based exhaustive sufficient dimension reduction estimation method that is shown to be consistent under mild assumptions. ECVE outperforms central subspace mean average variance estimation (csMAVE), its main competitor, under several simulation settings and in a benchmark data set analysis.
en
dc.description.sponsorship
Fonds zur Förderung der wissenschaftlichen Forschung (FWF)
-
dc.description.sponsorship
WWTF Wiener Wissenschafts-, Forschu und Technologiefonds
-
dc.language.iso
en
-
dc.publisher
INST MATHEMATICAL STATISTICS-IMS
-
dc.relation.ispartof
Electronic Journal of Statistics
-
dc.subject
central subspace
en
dc.subject
ensembles
en
dc.subject
linear sufficient reduction
en
dc.subject
regression
en
dc.subject
semi-parametric
en
dc.title
The ensemble conditional variance estimator for sufficient dimension reduction
en
dc.type
Article
en
dc.type
Artikel
de
dc.contributor.affiliation
d-fine Austria GmbH, Austria
-
dc.description.startpage
1595
-
dc.description.endpage
1634
-
dc.relation.grantno
P 30690-N35
-
dc.relation.grantno
ICT19-018
-
dc.type.category
Original Research Article
-
tuw.container.volume
16
-
tuw.container.issue
1
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
tuw.project.title
Prognostizierung einer suffizienten Dimensions-Reduktions-Methodik
-
tuw.project.title
Distribution Recovery for Invariant Generation of Probabilistic Programs
-
tuw.researchTopic.id
A4
-
tuw.researchTopic.id
A3
-
tuw.researchTopic.name
Mathematical Methods in Economics
-
tuw.researchTopic.name
Fundamental Mathematics Research
-
tuw.researchTopic.value
50
-
tuw.researchTopic.value
50
-
dcterms.isPartOf.title
Electronic Journal of Statistics
-
tuw.publication.orgunit
E105-08 - Forschungsbereich Angewandte Statistik
-
tuw.publisher.doi
10.1214/22-EJS1994
-
dc.identifier.eissn
1935-7524
-
dc.description.numberOfPages
40
-
wb.sci
true
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
100
-
item.openairetype
Article
-
item.openairetype
Artikel
-
item.grantfulltext
restricted
-
item.cerifentitytype
Publications
-
item.cerifentitytype
Publications
-
item.languageiso639-1
en
-
item.openairecristype
http://purl.org/coar/resource_type/c_18cf
-
item.openairecristype
http://purl.org/coar/resource_type/c_18cf
-
item.fulltext
no Fulltext
-
crisitem.project.funder
FWF Fonds zur Förderung der wissenschaftlichen Forschung (FWF)
-
crisitem.project.funder
WWTF Wiener Wissenschafts-, Forschu und Technologiefonds
-
crisitem.project.grantno
P 30690-N35
-
crisitem.project.grantno
ICT19-018
-
crisitem.author.dept
E105-08 - Forschungsbereich Angewandte Statistik
-
crisitem.author.dept
E105-08 - Forschungsbereich Angewandte Statistik
-
crisitem.author.parentorg
E105 - Institut für Stochastik und Wirtschaftsmathematik
-
crisitem.author.parentorg
E105 - Institut für Stochastik und Wirtschaftsmathematik