central subspace; ensembles; linear sufficient reduction; regression; semi-parametric
en
Abstract:
Ensemble Conditional Variance Estimation (ECVE) is a novel sufficient dimension reduction (SDR) method in regressions with continuous response and predictors. ECVE applies to general non-additive error regression models and operates under the assumption that the predictors can be replaced by a lower dimensional projection without loss of information. It is a semiparametric forward regression model-based exhaustive sufficient dimension reduction estimation method that is shown to be consistent under mild assumptions. ECVE outperforms central subspace mean average variance estimation (csMAVE), its main competitor, under several simulation settings and in a benchmark data set analysis.
en
Project title:
Prognostizierung einer suffizienten Dimensions-Reduktions-Methodik: P 30690-N35 (Fonds zur Förderung der wissenschaftlichen Forschung (FWF)) Distribution Recovery for Invariant Generation of Probabilistic Programs: ICT19-018 (WWTF Wiener Wissenschafts-, Forschu und Technologiefonds)
-
Research Areas:
Mathematical Methods in Economics: 50% Fundamental Mathematics Research: 50%