DC FieldValueLanguage
dc.contributor.advisorNordhausen, Klaus-
dc.contributor.authorFischer, Gregor-
dc.date.accessioned2020-07-23T16:06:52Z-
dc.date.issued2020-
dc.date.submitted2020-06-
dc.identifier.urihttps://doi.org/10.34726/hss.2020.61440-
dc.identifier.urihttp://hdl.handle.net/20.500.12708/15034-
dc.descriptionAbweichender Titel nach Übersetzung der Verfasserin/des Verfassers-
dc.description.abstractThis thesis shows how blind source separation methods for time-series can be applied to compositional time series. In many applications data sets are of compositional nature, meaning that the relative values of the variables are of interest instead of the absolute ones. Blind source separation (BSS) is a popular modelling approach for multivariate time-series, since it aims to decompose them into latent sources on which univariate modelling is possible. Compositional time-series are per definition multivariate. Moreover, in their isometric-log-ratio-coordinate representation, on which the BSS models are built, they are multivariate if the number of compositions is greater than two. Therefore blind source separation is very useful for compositional time-series. Our methodology is illustrated on a real world data set: Absorption data from a stream in Lower Austria. In the study of dissolved organic matter, ratios of absorption coefficients have been used to indicate the quality of dissolved organic matter in various environments, yielding compositional time series data, on which our new method can be applied.en
dc.format67 Seiten-
dc.languageEnglish-
dc.language.isoen-
dc.subjectSOBIde
dc.subjectlog-Verhältnis-Transformationde
dc.subjectVerhältnisse von Absorptionskoeffizientende
dc.subjectSOBIen
dc.subjectlog-ratio-transformationen
dc.subjectabsorption ratiosen
dc.titleBlind source separation for compositional time seriesen
dc.title.alternativeBlind Source Separation für kompositionelle Zeitreihende
dc.typeThesisen
dc.typeHochschulschriftde
dc.identifier.doi10.34726/hss.2020.61440-
dc.publisher.placeWien-
tuw.thesisinformationTechnische Universität Wien-
tuw.publication.orgunitE105 - Institut für Stochastik und Wirtschaftsmathematik-
dc.type.qualificationlevelDiploma-
dc.identifier.libraryidAC15673216-
dc.description.numberOfPages67-
dc.thesistypeDiplomarbeitde
dc.thesistypeDiploma Thesisen
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openaccessfulltextOpen Access-
item.openairetypeThesis-
item.openairetypeHochschulschrift-
item.fulltextwith Fulltext-
item.languageiso639-1en-
item.grantfulltextopen-
item.cerifentitytypePublications-
item.cerifentitytypePublications-
Appears in Collections:Thesis

Files in this item:


Google ScholarTM

Check


Items in reposiTUm are protected by copyright, with all rights reserved, unless otherwise indicated.