<div class="csl-bib-body">
<div class="csl-entry">Wang, Y. R., Khamis, M. A., Ngo, H. Q., Pichler, R., & Suciu, D. (2022). Optimizing Recursive Queries with Progam Synthesis. In <i>SIGMOD ’22: Proceedings of the 2022 International Conference on Management of Data</i> (pp. 79–93). Association for Computing Machinery (ACM). https://doi.org/10.1145/3514221.3517827</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/152302
-
dc.description.abstract
Most work on query optimization has concentrated on loop-free queries. However, data science and machine learning workloads today typically involve recursive or iterative computation. In this work, we propose a novel framework for optimizing recursive queries using methods from program synthesis. In particular, we introduce a simple yet powerful optimization rule called the "FGH-rule" which aims to find a faster way to evaluate a recursive program. The solution is found by making use of powerful tools, such as a program synthesizer, an SMT-solver, and an equality saturation system. We demonstrate the strength of the optimization by showing that the FGH-rule can lead to speedups up to 4 orders of magnitude on three, already optimized Datalog systems
en
dc.description.sponsorship
Fonds zur Förderung der wissenschaftlichen Forschung (FWF)
-
dc.language.iso
en
-
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
-
dc.subject
Datalog
en
dc.subject
Recursive Aggregate
en
dc.subject
Program Synthesis
en
dc.subject
Semirings
en
dc.title
Optimizing Recursive Queries with Progam Synthesis
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.rights.license
Creative Commons Namensnennung 4.0 International
de
dc.rights.license
Creative Commons Attribution 4.0 International
en
dc.contributor.affiliation
University of Washington, United States of America (the)
-
dc.contributor.affiliation
RelationalAI, USA
-
dc.contributor.affiliation
RelationalAI, USA
-
dc.contributor.affiliation
University of Washington, United States of America (the)