<div class="csl-bib-body">
<div class="csl-entry">Lunzer, A., Kraft, S., Müller, S., & Hofbauer, H. (2019). CPFD simulation of a dual fluidized bed cold flow model. In <i>Proceedings of the ICPS 19</i> (pp. 160–171). Technische Universität Wien. https://doi.org/10.34726/87</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/15413
-
dc.identifier.uri
https://doi.org/10.34726/87
-
dc.description.abstract
The present work was carried out to simulate a cold flow model of a biomass gasification plant. The fluid dynamical behavior depends heavily on the particles’ properties like the particle size distribution (PSD). For the simulation an Eulerian-Lagrangian approach, in particular by the multi-phase particle in cell (MP-PIC) method, was used to simulate particles with a defined PSD. Therefore, Barracuda VR, a software tool with an implemented MP-PIC method specifically designed for CPFD (computational particle fluid dynamics) simulations, was the software of choice. The simulation results were verified with data of previously conducted experiments on a physical cold flow model. The cold flow model was operated with air and bronze particles. The simulations were conducted with different drag laws: an energyminimization multi-scale (EMMS) approach, a blended Wen-Yu and Ergun (WYE) drag law, and a drag law of Ganser. Furthermore, a focus was set onto the normal particle stress (PS value variation), which is significant in close-packed regions, and the loop seals’ fluidization rate was varied to influence the particle circulation rate. The settings of the simulation were optimized, flooding behavior did not occur in advanced simulations, and the simulations reached a stable steady state behavior. The Ganser drag law combined with an adjusted PS value with (PS = 30 Pa) or without (PS = 50 Pa) increased loop seal fluidization rates provided the best simulation results.
en
dc.language.iso
en
-
dc.rights.uri
http://rightsstatements.org/vocab/InC/1.0/
-
dc.subject
computational fluid dynamics
en
dc.subject
CPFD simulation
en
dc.subject
Cold Flow Model
en
dc.subject
fluidized bed
en
dc.title
CPFD simulation of a dual fluidized bed cold flow model
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.rights.license
Urheberrechtsschutz
de
dc.rights.license
In Copyright
en
dc.identifier.doi
10.34726/87
-
dc.relation.isbn
978-3-9503671-1-9
-
dc.relation.doi
10.34726/22
-
dc.description.startpage
160
-
dc.description.endpage
171
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
Proceedings of the ICPS 19
-
tuw.relation.ispartof
10.34726/22
-
tuw.relation.publisher
Technische Universität Wien
-
tuw.relation.publisherplace
Wien
-
tuw.version
vor
-
tuw.publication.orgunit
E166-07 - Forschungsbereich Brennstoff- und Energiesystemtechnik
-
dc.identifier.libraryid
AC17202683
-
dc.description.numberOfPages
12
-
tuw.author.orcid
0000-0001-8878-429X
-
dc.rights.identifier
Urheberrechtsschutz
de
dc.rights.identifier
In Copyright
en
item.languageiso639-1
en
-
item.openairetype
conference paper
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.grantfulltext
open
-
item.cerifentitytype
Publications
-
item.fulltext
with Fulltext
-
item.openaccessfulltext
Open Access
-
crisitem.author.dept
E317 - Institut für Leichtbau und Struktur-Biomechanik
-
crisitem.author.dept
E166-07 - Forschungsbereich Brennstoff- und Energiesystemtechnik
-
crisitem.author.dept
E166 - Institut für Verfahrenstechnik, Umwelttechnik und technische Biowissenschaften
-
crisitem.author.orcid
0000-0001-8878-429X
-
crisitem.author.parentorg
E300 - Fakultät für Maschinenwesen und Betriebswissenschaften
-
crisitem.author.parentorg
E166 - Institut für Verfahrenstechnik, Umwelttechnik und technische Biowissenschaften