<div class="csl-bib-body">
<div class="csl-entry">Jia, X., & Mang, H. A. (2014). Displacement-based finite difference approximations of derivatives of the tangent stiffness matrix with respect to the load parameter. <i>Proceedings in Applied Mathematics and Mechanics</i>, <i>14</i>(1), 195–196. https://doi.org/10.1002/pamm.201410085</div>
</div>
This is the peer reviewed version of the following article: Jia, X. and Mang, H. A. (2014), Displacement-based finite difference approximations of derivatives of the tangent stiffness matrix with respect to the load parameter. Proc. Appl. Math. Mech., 14: 195–196, which has been published in final form at <a href="https://doi.org/10.1002/pamm.201410085">https://doi.org/10.1002/pamm.201410085</a>. <br />This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.
-
dc.description.abstract
The vehicle to investigate to which extent energy‐based categorization of buckling can be linked up with spherical geometry is the so‐called consistently linearized eigenproblem. This investigation requires computation of the first and the second derivative of the tangent stiffness matrix equation image with respect to a dimensionless load parameter λ in the frame of the Finite Element Method (FEM). A finite‐difference approximation of the first derivative of equation image , redefined as a directional derivative, has proved to meet the requirements of computational efficiency and sufficient accuracy. It represents a displacement‐based finite‐difference approximation, abbreviated as DBFDA. The present work is devoted to the computation of a DBFDA of the second derivative of ˜ KT with respect to λ. For the special case of a two‐dimensional co‐rotational beam element, an analytical solution of this derivative is presented. A circular arch, subjected to a vertical point load on its apex, serves as an example for numerically assessing the usefulness of the computed DBFDAs of the first and the second derivative of equation image with respect to λ.
en
dc.description.sponsorship
Austrian Science Funds (FWF)
-
dc.language
English
-
dc.language.iso
en
-
dc.publisher
Wiley-VCH Verlag GmbH & Co. KGaA
-
dc.relation.ispartof
Proceedings in Applied Mathematics and Mechanics
-
dc.rights.uri
http://rightsstatements.org/vocab/InC/1.0/
-
dc.title
Displacement-based finite difference approximations of derivatives of the tangent stiffness matrix with respect to the load parameter
en
dc.type
Article
en
dc.type
Artikel
de
dc.rights.license
Urheberrechtsschutz
de
dc.rights.license
In Copyright
en
dc.description.startpage
195
-
dc.description.endpage
196
-
dc.relation.grantno
P 24526-N26
-
dc.rights.holder
2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
-
dc.type.category
Original Research Article
-
tuw.container.volume
14
-
tuw.container.issue
1
-
tuw.peerreviewed
false
-
tuw.version
am
-
dcterms.isPartOf.title
Proceedings in Applied Mathematics and Mechanics
-
tuw.publication.orgunit
E202 - Institut für Mechanik der Werkstoffe und Strukturen
-
tuw.publisher.doi
10.1002/pamm.201410085
-
dc.identifier.eissn
1617-7061
-
dc.identifier.libraryid
AC11360183
-
dc.description.numberOfPages
2
-
dc.identifier.urn
urn:nbn:at:at-ubtuw:3-2030
-
dc.rights.identifier
Urheberrechtsschutz
de
dc.rights.identifier
In Copyright
en
item.openairetype
research article
-
item.languageiso639-1
en
-
item.cerifentitytype
Publications
-
item.fulltext
with Fulltext
-
item.openaccessfulltext
Open Access
-
item.grantfulltext
open
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
crisitem.author.dept
E202 - Institut für Mechanik der Werkstoffe und Strukturen
-
crisitem.author.dept
E202 - Institut für Mechanik der Werkstoffe und Strukturen