<div class="csl-bib-body">
<div class="csl-entry">Kalliauer, J. (2016). <i>Insight into the structural behavior of concrete hinges by means of Finite Element simulations</i> [Diploma Thesis, Technische Universität Wien]. reposiTUm. https://doi.org/10.34726/hss.2016.37303</div>
</div>
-
dc.identifier.uri
https://doi.org/10.34726/hss.2016.37303
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/158625
-
dc.description
Zusammenfassung in deutscher Sprache
-
dc.description.abstract
Concrete hinges experience a renaissance, because the past decades have provided practical evidence that they are durable structural elements, but the functionality of concrete hinges remains to a considerable extent an enigma. This provides the motivation to gain further insight into the structural behavior of concrete hinges, based on nowadaysavailable experimental and theoretical methods. The present master thesis focuses on the numerical re-analysis of recently performed centric and eccentric compression tests on concrete hinges, based on nonlinear Finite Element (FE) simulations carried out with concrete model -CC3DNonLinCementitious2- and the software Atena science 5.1. FE simulations based on default material parameters, related to the measured Young-s modulus and to the measured cube compressive strength of concrete, significantly overestimate the experimentally observed structural stiffness and ultimate load carrying capacity of concrete hinges. Consideration of concrete shrinkage and of a more moderate strengthening of concrete under triaxial compression allows for a qualitatively and quantitatively satisfactory reproduction of experimental measurements. In addition, a recently developed multiscale model for tensile strength and softening of concrete is used to quantify damage of concrete resulting from shrinkage strains restrained by the two connected reinforcement cages. The FE simulations underline that concrete hinges exhibit a structural behavior which is very beneficial for structural applications. Close to the ultimate load carrying capacity, rotation angles increase significantly, while the strength of the structure is almost constant. This results from the rather ductile behavior of concrete forming the surface at the innermost region of the neck, where a biaxial compressive stress state prevails. Only because this concrete surface layer remains in place (no spalling), a triaxial compressive stress state can build up behind the surface layer, i. e. inside the volume of the neck. The resulting confinement pressure increases the strength of concrete considerably, and this explains the unexpected large load carrying capacity of concrete hinges.
en
dc.language
English
-
dc.language.iso
en
-
dc.rights.uri
http://rightsstatements.org/vocab/InC/1.0/
-
dc.subject
Concrete
de
dc.subject
Structural behavior
de
dc.subject
Concrete
en
dc.subject
Structural behavior
en
dc.title
Insight into the structural behavior of concrete hinges by means of Finite Element simulations
en
dc.type
Thesis
en
dc.type
Hochschulschrift
de
dc.rights.license
In Copyright
en
dc.rights.license
Urheberrechtsschutz
de
dc.identifier.doi
10.34726/hss.2016.37303
-
dc.contributor.affiliation
TU Wien, Österreich
-
dc.rights.holder
Johannes Kalliauer
-
dc.publisher.place
Wien
-
tuw.version
vor
-
tuw.thesisinformation
Technische Universität Wien
-
dc.contributor.assistant
Schlappal, Thomas
-
tuw.publication.orgunit
E202 - Institut für Mechanik der Werkstoffe und Strukturen
-
dc.type.qualificationlevel
Diploma
-
dc.identifier.libraryid
AC13107478
-
dc.description.numberOfPages
163
-
dc.thesistype
Diplomarbeit
de
dc.thesistype
Diploma Thesis
en
tuw.author.orcid
0000-0003-4178-4510
-
dc.rights.identifier
In Copyright
en
dc.rights.identifier
Urheberrechtsschutz
de
tuw.advisor.staffStatus
staff
-
tuw.assistant.staffStatus
exstaff
-
tuw.advisor.orcid
0000-0002-6468-1840
-
item.mimetype
application/pdf
-
item.grantfulltext
open
-
item.languageiso639-1
en
-
item.fulltext
with Fulltext
-
item.cerifentitytype
Publications
-
item.openaccessfulltext
Open Access
-
item.openairetype
master thesis
-
item.openairecristype
http://purl.org/coar/resource_type/c_bdcc
-
crisitem.author.dept
E202-01 - Forschungsbereich Festigkeitslehre und Biomechanik
-
crisitem.author.orcid
0000-0003-4178-4510
-
crisitem.author.parentorg
E202 - Institut für Mechanik der Werkstoffe und Strukturen