<div class="csl-bib-body">
<div class="csl-entry">Papadogiannis, L. (2020). <i>Class field theory - Artin reciprocity law</i> [Diploma Thesis, Technische Universität Wien]. reposiTUm. https://doi.org/10.34726/hss.2020.56963</div>
</div>
-
dc.identifier.uri
https://doi.org/10.34726/hss.2020.56963
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/16410
-
dc.description
Abweichender Titel nach Übersetzung der Verfasserin/des Verfassers
-
dc.description.abstract
In this Thesis we give an introduction in Class Field Theory, provingArtin reciprocity law. The goal of class field theory is to describe the Galois extensions of a local or global field in terms of the arithmetic of the field itself. Apart from a few remarks about the more general cases, these notes will concentrate on the case of abelian extensions, which is the basic case. We give the framework of the theoryintroducing Abstract class field theory and we can see how this canbe translated in the case of global class field theory using idele classgroups as modules or multiplicative groups in the case of local classfield theory. The language that we use is purely algebraic, with theexception of an analytic approach which is mostly redundant nowadays after much effort of the pioneers in that field to confront such a defect, as it was considered.
en
dc.language
English
-
dc.language.iso
en
-
dc.rights.uri
http://rightsstatements.org/vocab/InC/1.0/
-
dc.subject
Klassenkörpertheorie
de
dc.subject
Artinsches Reziprozitätsgesetz
de
dc.subject
class field theory
en
dc.subject
Artin reciprocity law
en
dc.title
Class field theory - Artin reciprocity law
en
dc.title.alternative
Klassenkörpertheorie - das Artinsche Reziprozitätsgesetz
de
dc.type
Thesis
en
dc.type
Hochschulschrift
de
dc.rights.license
In Copyright
en
dc.rights.license
Urheberrechtsschutz
de
dc.identifier.doi
10.34726/hss.2020.56963
-
dc.contributor.affiliation
TU Wien, Österreich
-
dc.rights.holder
Loukas Papadogiannis
-
dc.publisher.place
Wien
-
tuw.version
vor
-
tuw.thesisinformation
Technische Universität Wien
-
tuw.publication.orgunit
E104 - Institut für Diskrete Mathematik und Geometrie