<div class="csl-bib-body">
<div class="csl-entry">Münz, P. (2020). <i>Euler schemes and large deviations for stochastic Volterra equations</i> [Diploma Thesis, Technische Universität Wien]. reposiTUm. https://doi.org/10.34726/hss.2020.80522</div>
</div>
-
dc.identifier.uri
https://doi.org/10.34726/hss.2020.80522
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/16413
-
dc.description
Abweichender Titel nach Übersetzung der Verfasserin/des Verfassers
-
dc.description.abstract
The main goal of this thesis is to show the Large Deviation Principle (LDP, see definition 4.2) for a family $\{X^\varepsilon, \varepsilon > 0\}$ where each $X^\varepsilon$ is solving a stochastic Volterra integral equation of the form\begin{equation*}X^\varepsilon_t = X^\varepsilon_0 + \int_0^t b(t,s,X^\varepsilon_s) \ dt + \sqrt{\varepsilon} \int_0^t \sigma(t,s,X^\varepsilon_s) \ dW\end{equation*}on the same probability space where $W$ is a Standard Brownian Motion. Chapter 2 contains the notations which will be used and in section 2.3 the assumptions under which the statements of this thesis hold are listed. The proof of the LDP will be done in chapter 5 by showing the Laplace Principle. The equivalence of these two principles and the conditions under which this equivalence holds true is stated in chapter 4 (see also [DE11]). In chapter \ref{Konvergenz von Xn} an Euler scheme for this type of integral equation is presented.\newline\hspace*{5mm}A large part of this thesis is dedicated to giving more detailed proofs of the statements from [Zha08], some of which are shown under stronger conditions than in the corresponding paper, since the proofs in [Zha08] for the weaker ones were not completely clear to me.
en
dc.language
English
-
dc.language.iso
en
-
dc.rights.uri
http://rightsstatements.org/vocab/InC/1.0/
-
dc.subject
Stochastische Volterra-Integralgleichung
de
dc.subject
Euler-Verfahren
de
dc.subject
Prinzip der Großen Abweichungen
de
dc.subject
Laplace-Prinzip
de
dc.subject
Stochastic Volterra Integral Equation
en
dc.subject
Euler scheme
en
dc.subject
Large Deviation Principle
en
dc.subject
Laplace Principle
en
dc.title
Euler schemes and large deviations for stochastic Volterra equations
en
dc.title.alternative
Euler-Verfahren und große Abweichungen für stochastische Volterragleichungen
de
dc.type
Thesis
en
dc.type
Hochschulschrift
de
dc.rights.license
In Copyright
en
dc.rights.license
Urheberrechtsschutz
de
dc.identifier.doi
10.34726/hss.2020.80522
-
dc.contributor.affiliation
TU Wien, Österreich
-
dc.rights.holder
Philip Münz
-
dc.publisher.place
Wien
-
tuw.version
vor
-
tuw.thesisinformation
Technische Universität Wien
-
tuw.publication.orgunit
E105 - Institut für Stochastik und Wirtschaftsmathematik