Hinweis
Dieser Eintrag wurde automatisch aus einem Altsystem migriert. Die Daten wurden nicht überprüft und entsprechen eventuell nicht den Qualitätskriterien des vorliegenden Systems.
Grass, D. (2012). Numerical computation of the optimal vector field: Exemplified by a fishery model. JOURNAL OF ECONOMIC DYNAMICS & CONTROL, 36(10), 1626–1658. https://doi.org/10.1016/j.jedc.2012.04.006
E105-04 - Forschungsbereich Variationsrechnung, Dynamische Systeme und Operations Research
-
Zeitschrift:
JOURNAL OF ECONOMIC DYNAMICS & CONTROL
-
ISSN:
0165-1889
-
Datum (veröffentlicht):
2012
-
Umfang:
33
-
Verlag:
ELSEVIER
-
Peer Reviewed:
Ja
-
Keywords:
Applied Mathematics; Optimal vector field; BVP; Continuation; Multiple optimal solutions; Threshold point; Control and Optimization; Economics and Econometrics
-
Abstract:
Numerous optimal control models analyzed in economics are formulated as discounted infinite time horizon problems, where the defining functions are nonlinear as well in the states as in the controls. As a consequence solutions can often only be found numerically. Moreover, the long run optimal solutions are mostly limit sets like equilibria or limit cycles. Using these specific solutions a BVP app...
Numerous optimal control models analyzed in economics are formulated as discounted infinite time horizon problems, where the defining functions are nonlinear as well in the states as in the controls. As a consequence solutions can often only be found numerically. Moreover, the long run optimal solutions are mostly limit sets like equilibria or limit cycles. Using these specific solutions a BVP approach together with a continuation technique is used to calculate the parameter dependent dynamic structure of the optimal vector field. We use a one dimensional optimal control model of a fishery to exemplify the numerical techniques. But these methods are applicable to a much wider class of optimal control problems with a moderate number of state and control variables.
en
Forschungsschwerpunkte:
Mathematical Methods in Economics: 70% Modelling and Simulation: 30%