Title: IoT and edge computing technologies for vertical farming from seed to harvesting
Other Titles: ioT und Edge Computing Technologien für Vertical Farming vomSamen bis zur Ernte
Language: English
Authors: Jandl, Adrian 
Qualification level: Diploma
Advisor: Dustdar, Schahram 
Assisting Advisor: Frangoudis, Pantelis 
Issue Date: 2020
Jandl, A. (2020). IoT and edge computing technologies for vertical farming from seed to harvesting [Diploma Thesis, Technische Universität Wien]. reposiTUm. https://doi.org/10.34726/hss.2021.81340
Number of Pages: 83
Qualification level: Diploma
With the ever growing global population, a key challenge of the future will be providing enough food for people. One proposed solution to this is vertical farming, which is the practice of growing crops vertically, above each other in order to increase total crop yield for a given space. Supported by IoT technologies, such as sensors and artificial lighting, it allows farmers to utilize spaces that previously did not provide suitable growing conditions for crops, such as underground car parks, or abandoned underground tunnels. By utilizing developments in IoT technologies, and mechanisms for efficient management of large volumes of IoT-generated data, such as stream processing, it is now possible to measure and analyse the vast amount of parameters that influence plant growth, such as humidity or temperature. This makes it possible to facilitate continuous monitoring and decision making at runtime towards a fully autonomic management of vertical farming processes. Importantly, these technologies can provide support for long-term storage and analysis of such data, in order to create new domain knowledge, such as by developing databases that contain optimal growth parameters for a majority of edible plants.In this thesis we lay the groundwork for such mechanisms. We analyse the software design requirements for a system that can gather such information, as well as analyse various network topologies and deployment strategies for it. In addition, we show an implementation that already can be used to gather important data.Our software architecture lays a focus on extensibility and allows others to easily build upon it. Last, we perform extensive testbed experiments to evaluate the performance of our scheme and to demonstrate its feasibility to operate in diverse deployment scenarios and network architectures and topologies. Aiming to identify the performance limits of low-cost edge computing equipment, we deploy the components of our architecture on low-end single board computers and show them to be able to support monitoring workloads that correspond to thousands of sensing devices. We further explore experimentally the performance and design implications of using modern Low-Power Wide Area Networking technologies, and in particular LoRaWAN, to collect monitoring data from remote vertical farms with minimal network infrastructure requirements. We show that while deploying and managing a full private LPWAN over edge computing devices may have significant effects on the overall system's workload processing capacity, it is still possible to support large-scale vertical farm installations.
Keywords: Vertikales farmen; Edge Computing; Internet of Things; Sensoren; Deployment Szenarien; Benchmarks
vertical farming; edge computing; internet of things; sensors; deployment scenarios; benchmark experiments
URI: https://doi.org/10.34726/hss.2021.81340
DOI: 10.34726/hss.2021.81340
Library ID: AC16117325
Organisation: E194 - Institut für Information Systems Engineering 
Publication Type: Thesis
Appears in Collections:Thesis

Files in this item:

Page view(s)

checked on Oct 19, 2021


checked on Oct 19, 2021

Google ScholarTM


Items in reposiTUm are protected by copyright, with all rights reserved, unless otherwise indicated.