Title: Influences of Selective Waste Gas Recirculation on the Sinter Plant Process
Authors: Niel, Johannes  
Weiß, Bernd 
Wukovits, Walter  
Keywords: sinter plant model; selective waste gas recirculation; process simulation; distribution functions; SO2 reduction; energy reduction
Issue Date: Dec-2020
Book Title: Proceedings of the 16th Minisymposium Verfahrenstechnik and 7th Partikelforum (TU Wien, Sept. 21/22, 2020) 
Abstract: 
Operating a sinter plant is material consuming and an energy intense process. It has vast impacts on the hot metal production and on the environment. Selective waste gas recirculation (SWGR) has been introduced to complement the sintering process to reduce energy consumption, waste gas volume and SO2 emissions. Simulating this complex process is an attractive and low-cost opportunity for testing new operational settings.
The sinter plant implementation in gPROMS ModelBuilder® characterises the processes based on three sub-models. A burner model describes the ignition effects, a black box model characterises the most important sinter strand processes and a wind box model splits the total off-gas stream into a recycle gas and a stack gas. A specific temperature polynomial was developed to represent the temperature distribution over the wind boxes enabling more detailed investigations of SWGR and a stable calculation of the sinter process in highly integrated flowsheets of iron production facilities.Introducing SWGR to the sinter process, the model shows reduced coke consumption, stack gas and sulphur dioxide emissions by 11 %, 27 % and 27 %, respectively. The sinter binding capacity of SO2 has the highest influence on lowering SO2 emissions under SWGR conditions.
URI: http://hdl.handle.net/20.500.12708/16625
http://dx.doi.org/10.34726/545
DOI: 10.34726/545
Organisation: E166-02-2 - Forschungsgruppe Fluiddynamische Simulation (CFD) 
License: CC BY 4.0 CC BY 4.0
Publication Type: Inproceedings
Konferenzbeitrag
Appears in Collections:Conference Paper

Files in this item:

File Description SizeFormat
MoV2_02.pdf1.9 MBAdobe PDFThumbnail
 View/Open
Show full item record

Google ScholarTM

Check


This item is licensed under a Creative Commons License Creative Commons