<div class="csl-bib-body">
<div class="csl-entry">Tausendschön, J., & Radl, S. (2020). Deep Neural Network-based View factor Modelling of Radiative Heat Transfer between Particles. In C. Jordan (Ed.), <i>Proceedings of the 16th Minisymposium Verfahrenstechnik and 7th Partikelforum (TU Wien, Sept. 21/22, 2020)</i> (pp. MoV5-(03) page 1-MoV5-(03) page 3). chemical-engineering.at. https://doi.org/10.34726/601</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/16658
-
dc.identifier.uri
https://doi.org/10.34726/601
-
dc.description.abstract
We present a Deep Neural Network (DNN)-based view factor model to calculate radiative heat transfer between particles. Different neural net model parameters like: the number of hidden layers, the number of nodes per layer, optimization algorithms and techniques to prevent overfitting of the DNN are investigated. Using a simple regressor showed that one input marker, namely the surface distance between the interacting particles, cannot accurately predict the widespread view factors for increasing surface distance. Therefore, the effect of additional input markers like the solid angle between particles or a derivate of a local particle volume fraction is examined. The outcome of the DNN-model is compared to literature models and a simple regression analysis. It is demonstrated that the pretrained DNN-model can model view factors at higher accuracy and with significantly less computational effort than other literature models.
en
dc.language.iso
en
-
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
-
dc.subject
Radiative Heat Transfer
en
dc.subject
data-driven modelling
en
dc.subject
machine learning
en
dc.subject
deep neural networks
en
dc.title
Deep Neural Network-based View factor Modelling of Radiative Heat Transfer between Particles
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.rights.license
Creative Commons Namensnennung 4.0 International
de
dc.rights.license
Creative Commons Attribution 4.0 International
en
dc.identifier.doi
10.34726/601
-
dc.contributor.affiliation
Graz University of Technology, Austria
-
dc.contributor.affiliation
Graz University of Technology, Austria
-
dc.relation.isbn
978-3-903337-01-5
-
dc.relation.doi
10.34726/541
-
dc.description.startpage
MoV5-(03) page 1
-
dc.description.endpage
MoV5-(03) page 3
-
dcterms.dateSubmitted
2020-02-28
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
Proceedings of the 16th Minisymposium Verfahrenstechnik and 7th Partikelforum (TU Wien, Sept. 21/22, 2020)