<div class="csl-bib-body">
<div class="csl-entry">Bachmann, B. E. M. (2021). <i>Mechanobiology at the microscale : Organ-on-a-chip technology as a tool to boost preclinical model relevance</i> [Dissertation, Technische Universität Wien]. reposiTUm. https://doi.org/10.34726/hss.2021.50561</div>
</div>
-
dc.identifier.uri
https://doi.org/10.34726/hss.2021.50561
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/17027
-
dc.description
Abweichender Titel nach Übersetzung der Verfasserin/des Verfassers
-
dc.description
Kumulative Dissertation aus fünf Artikeln
-
dc.description.abstract
Organ-on-a-chip technology provides precise control over vital biological, physical, and chemical parameters needed to recreate the physiological niche in vitro, thus fostering the establishment of organ models capable of recapitulating near-native tissue architectures and functions. These smallest functional units of human organs can now be subjected to dynamic (patho)physiological stimulation such as fluid flow, matrix stiffness, and nutrient diffusion. It is essential to highlight that any living tissue will react to changes in their respective environment, resulting in either maintaining healthy or displaying diseased phenotypes. Consequently, a deeper understanding of the cellular mechanisms that guide and regulate cell fate, including apoptosis, proliferation, differentiation, and migration in the presence of external biophysical stimuli, will ultimately open new insights into the onset, progression, and remission of diseases. This doctoral work clearly demonstrates that mechanobiological stimuli significantly improve physiologic relevance within vasculature-on-a-chip and cartilage-on-chip devices. The combinatorial effects of fluid perfusion, interstitial flow, and soluble compound delivery are instrumental in forming vasculature within large-sized vascularized tissue constructs and defining mechanisms in reciprocal signaling during vasculogenesis. This doctoral thesis also reports that directional interstitial fluid flow stimulation substantially contributes to establishing a blood-lymphatic capillary interface by initiating lymphatic sprout formation and guiding lymphatic vessel maturation. Similarly, replicating perichondral tissue elasticity and the directional nutrient gradient across cartilage tissue improved the redifferentiation capacity of primary chondrocytes on-chip. Chondrocytes cultivated under optimized conditions exhibited a striking similarity to native cartilage, including sphericalmorphology, synthesized cartilage matrix, and arranged into superficial and deep zone cartilage. The microphysiological systems developed within this thesis are expected to foster the identification of novel drug delivery routes into the lymphatic system and decipher deregulatory disease mechanisms in cartilage anabolism and catabolism, thus providing a tool to boost the discovery of novel drug candidates.
en
dc.language
English
-
dc.language.iso
en
-
dc.rights.uri
http://rightsstatements.org/vocab/InC/1.0/
-
dc.subject
Organ-on-a-Chip
de
dc.subject
Biomechanik
de
dc.subject
Organ-on-a-Chip
en
dc.subject
biomechanics
en
dc.title
Mechanobiology at the microscale : Organ-on-a-chip technology as a tool to boost preclinical model relevance
en
dc.title.alternative
Mechanobiologie in der Mikroskala
de
dc.type
Thesis
en
dc.type
Hochschulschrift
de
dc.rights.license
In Copyright
en
dc.rights.license
Urheberrechtsschutz
de
dc.identifier.doi
10.34726/hss.2021.50561
-
dc.contributor.affiliation
TU Wien, Österreich
-
dc.rights.holder
Barbara Eva Maria Bachmann
-
dc.publisher.place
Wien
-
tuw.version
vor
-
tuw.thesisinformation
Technische Universität Wien
-
dc.contributor.assistant
Redl, Heinz
-
tuw.publication.orgunit
E163 - Institut für Angewandte Synthesechemie
-
dc.type.qualificationlevel
Doctoral
-
dc.identifier.libraryid
AC16163373
-
dc.description.numberOfPages
160
-
dc.thesistype
Dissertation
de
dc.thesistype
Dissertation
en
tuw.author.orcid
0000-0002-5186-4808
-
dc.rights.identifier
In Copyright
en
dc.rights.identifier
Urheberrechtsschutz
de
tuw.advisor.staffStatus
staff
-
tuw.assistant.staffStatus
staff
-
tuw.advisor.orcid
0000-0002-7625-2445
-
item.languageiso639-1
en
-
item.openairetype
doctoral thesis
-
item.grantfulltext
open
-
item.fulltext
with Fulltext
-
item.cerifentitytype
Publications
-
item.mimetype
application/pdf
-
item.openairecristype
http://purl.org/coar/resource_type/c_db06
-
item.openaccessfulltext
Open Access
-
crisitem.author.dept
E163-03-1 - Forschungsgruppe Cell Chip
-
crisitem.author.parentorg
E163-03 - Forschungsbereich Organische und Biologische Chemie