DC FieldValueLanguage
dc.contributor.advisorHomolka, Peter-
dc.contributor.authorMa, Xiangjie-
dc.date.accessioned2021-03-18T14:26:09Z-
dc.date.issued2021-
dc.date.submitted2021-03-
dc.identifier.urihttps://doi.org/10.34726/hss.2021.68644-
dc.identifier.urihttp://hdl.handle.net/20.500.12708/17064-
dc.descriptionArbeit an der Bibliothek noch nicht eingelangt - Daten nicht geprüft-
dc.descriptionAbweichender Titel nach Übersetzung der Verfasserin/des Verfassers-
dc.description.abstract3D printing offers fascinating possibilities for the production of X-ray phantoms for general (projective) radiography up to CT applications. While in 2D phantoms different attenuations can be realized by different absorption lengths, CT phantoms require materials with different mass density and/or different effective atomic number. In FDM (fused deposition modeling) printing, mass density depends on packing density of solid structures. Common printing parameters, however, result in filling ratios < 100%, and thus lower density negatively affecting reproducibility of phantoms, x-ray attenuation and Hounsfield Units in CT, and thus contrasts. As a consequence, printing parameters need to be optimized and controlled to result in maximum solid density. In SLA (Stereolithography) printing parameters do not influence density, and can only be set manually in one of the printers used (Anycubic Photon). In this project 41 kinds of materials consisting of filaments and resins were printed with different kinds of printers (Utimaker2+, Anycubic Photon, Formlabs Form 2 and Connex3). The optimal printing parameters for optimal printing quality and optimal filling ratio of 29 kinds of materials for FDM printer were measured respectively. An X-ray phantom was designed and printed out, and it was used for measuring Hounsfield Units (HU) of 41 kinds of materials by CT scanning.Materials most suitable for mimicking soft tissues and bone in radiographic phantoms could be identified.en
dc.format119 Seiten-
dc.languageEnglish-
dc.language.isoen-
dc.subjectPhantomsen
dc.subject3d printingen
dc.subjectradiographyen
dc.subjectcomputed tomographyen
dc.subjectadditive manufacturingen
dc.titleClassification of additive manufacturing materials for radiologic phantomsen
dc.typeThesisen
dc.typeHochschulschriftde
dc.identifier.doi10.34726/hss.2021.68644-
dc.publisher.placeWien-
tuw.thesisinformationTechnische Universität Wien-
tuw.publication.orgunitE141 - Atominstitut-
dc.type.qualificationlevelDiploma-
dc.identifier.libraryidAC16168871-
dc.description.numberOfPages119-
dc.thesistypeDiplomarbeitde
dc.thesistypeDiploma Thesisen
item.openairetypeThesis-
item.openairetypeHochschulschrift-
item.openaccessfulltextOpen Access-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextopen-
item.fulltextwith Fulltext-
item.cerifentitytypePublications-
item.cerifentitytypePublications-
Appears in Collections:Thesis

Files in this item:


Page view(s)

42
checked on Jul 31, 2021

Download(s)

135
checked on Jul 31, 2021

Google ScholarTM

Check


Items in reposiTUm are protected by copyright, with all rights reserved, unless otherwise indicated.