<div class="csl-bib-body">
<div class="csl-entry">Lanzinger, M. P. (2020). <i>Hypergraph invariants for computational complexity</i> [Dissertation, Technische Universität Wien]. reposiTUm. https://doi.org/10.34726/hss.2021.90042</div>
</div>
-
dc.identifier.uri
https://doi.org/10.34726/hss.2021.90042
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/17183
-
dc.description.abstract
In the study of computational complexity, we search for lower and upper bounds for the effort – be it time, space, or something else – necessary to perform specific algorithmic tasks with a machine. Early efforts in the field focused on the separation of tasks into tractable and intractable problems. One prominent branch of such research is concerned with parameters that express the intricacy of the structure of an instance (we refer to such parameters as widths). In this thesis, we continue this thread of study with a particular focus on problems whose underlying structure is naturally expressed by hypergraphs. First, we study the structure of conjunctive queries (CQs) and Constraint Satisfaction Problems (CSPs) modulo equivalence. That is, we are not only interested in the hypergraph structure of the query, but the simplest (w.r.t. some width measure) hypergraph structure of any equivalent formulation of the query, thus capturing the complexity of the question itself rather than the complexity of the formulation. Building on these characterizations, we show that the parameterized tractability of CQs and unions of CQs (UCQs) is fully captured by the problem structure. Specifically, we demonstrate for CQs and UCQs that their evaluation is fixed-parameter tractable exactly for classes of instances that exhibit bounded semantic submodular width. Second, we propose a unifying theoretical framework for tractable hypergraph width checking. Following that, we utilize this framework and give some novel results in fractional (hyper)graph theory to resolve important open problems on tractable width checking from the literature. Most important of which, we prove the tractability of deciding low fractional hypertree width for hypergraph classes with bounded intersection. Finally, we propose a novel width parameter – nest-set width – that generalizes hypergraph β-acyclicity. In contrast to existing parameters that generalize β-acyclicity, our proposed width is recognizable in polynomial time and yields important new islands of tractability. In particular, we show that propositional satisfiability is fixed-parameter tractable when parameterized by nest-set width and that the evaluation of CQs with negation is tractable under bounded nest- set width.
en
dc.language
English
-
dc.language.iso
en
-
dc.rights.uri
http://rightsstatements.org/vocab/InC/1.0/
-
dc.subject
hypergraphs
en
dc.subject
hypertree decompositions
en
dc.subject
conjunctive queries
en
dc.subject
nest-set width
en
dc.subject
constraint satisfaction problems
en
dc.subject
computational complexity
en
dc.subject
parameterized complexity
en
dc.title
Hypergraph invariants for computational complexity
en
dc.type
Thesis
en
dc.type
Hochschulschrift
de
dc.rights.license
In Copyright
en
dc.rights.license
Urheberrechtsschutz
de
dc.identifier.doi
10.34726/hss.2021.90042
-
dc.contributor.affiliation
TU Wien, Österreich
-
dc.rights.holder
Matthias Paul Lanzinger
-
dc.publisher.place
Wien
-
tuw.version
vor
-
tuw.thesisinformation
Technische Universität Wien
-
tuw.publication.orgunit
E192 - Institut für Logic and Computation
-
dc.type.qualificationlevel
Doctoral
-
dc.identifier.libraryid
AC16183692
-
dc.description.numberOfPages
184
-
dc.thesistype
Dissertation
de
dc.thesistype
Dissertation
en
tuw.author.orcid
0000-0002-7601-3727
-
dc.rights.identifier
In Copyright
en
dc.rights.identifier
Urheberrechtsschutz
de
tuw.advisor.staffStatus
staff
-
tuw.advisor.orcid
0000-0002-1760-122X
-
item.languageiso639-1
en
-
item.openairetype
doctoral thesis
-
item.grantfulltext
open
-
item.fulltext
with Fulltext
-
item.cerifentitytype
Publications
-
item.mimetype
application/pdf
-
item.openairecristype
http://purl.org/coar/resource_type/c_db06
-
item.openaccessfulltext
Open Access
-
crisitem.author.dept
E192-02 - Forschungsbereich Databases and Artificial Intelligence