Title: Defining the arctic coastline with satellite data
Other Titles: Erfassung der arktischen Küste mit Satellitendaten
Language: English
Authors: Efimova, Aleksandra 
Qualification level: Diploma
Advisor: Bartsch, Annett 
Issue Date: 2021
Citation: 
Efimova, A. (2021). Defining the arctic coastline with satellite data [Diploma Thesis, Technische Universität Wien]. reposiTUm. https://doi.org/10.34726/hss.2021.71800
Number of Pages: 71
Qualification level: Diploma
Abstract: 
Die arktischen Regionen gehören zu den sich am schnellsten verandernden Landschaften der Erde. Insbesondere die arktischen Kustenlinien reagieren sehr empfindlich auf den Klimawandel. Küstenschäden konnen sich auf die Bevölkerung und die Tierwelt in diesen Gebieten auswirken und die zunehmende Erosion führt zu höheren Ingenieur- und Umsiedlungskosten für Küstendorfer. Darüber hinaus setzt die Erosion erhebliche Mengen an Kohlenstoff frei, was eine Rückkopplungsschleife auslösen kann, die den Klimawandel und die Küstenerosion noch weiter beschleunigt. Daher ist eine detaillierte Untersuchung der Küstenökosysteme, einschließlich der Küstenlinienarten und der Landbedeckung im Hinterland, notwendig. Fur die Erstellung und Validierung von Klassizierungen der Landbedeckung sind Datensatze mit hoher räumlicher Auflösung erforderlich. Multispektrale Fernerkundung könnte ein leistungsfähiges Werkzeug für die Landbedeckungskartierung sein. Sentinel-2 Daten bieten eine gute räumliche und zeitliche Auflösung und können die Überwachung großer Gebiete in der Arktis ermöglichen. In dieser Studie wurde eine traditionelle Landbedeckungsklassiffizierung (Minimum Distanz Algorithmus) mit einem anspruchsvolleren, maschinellen Lernansatz, unter Verwendung einer Gradient Boosting Machine (XGBoost), verglichen. Es wurden acht Landbedeckungsklassen aus gewählt und die Klassizierung in Untersuchungsgebieten entlang der Yukon-Küste, der Küste der Tschuktschensee, der Küste der Ostsibirischen See und der Küste der Laptewsee getestet. Die Ergebnisse zeigen, dass maschinelles Lernen fur die Küstenkartierung mit Sentinel-2 Daten in der Arktis überlegen ist. XGboost erreichte eine Gesamtklassizierungsgenauigkeit, die je nach Region zwischen 73,2% und 87,7% lag, während die Gesamtgenauigkeit von MDA etwas niedriger war und zwischen 60,3%und 81,9% lag. Fehlklassizierungen von Land und Wasser traten bei beiden Methoden und in allen Regionen auf und wurden hauptsächlich durch Schatten und spektrale Verwechslungen zwischen den Klassen verursacht. So wurden z. B. Felsschatten als Wasser klassiziert, insbesondere die Grenzen zwischen Wasser und anderen Landbedeckungsklassen waren schwer zu klassizieren. Die Klassizierungsergebnisse wurden des weiteren dazu verwendet die Küstenlinien entsprechend der Landbedeckungsklassen zu extrahieren und zu kartieren. Die Küstenlinie wurde als Grenze zwischen Wasser und Land definiert und halbautomatisch extrahiert. Eine erweiterte Genauigkeitsbewertung der XGBoost-Ergebnisse in Küstennähe zeigte, dass trotz der Klassikationsprobleme 75% in dieser Zone korrekt klassiziert wurden. Darüber hinaus zeigte die visuelle Interpretation der Ergebnisse, dass mit der angewandten Methodik eine genauere Abgrenzung von Küstenlinien im Vergleich zu bestehenden Küstenlinien-Datensatzen aus der Global Self-consistent, Hierarchical, High-resolution Geography Database(GSHHG) erstellt werden kann.

The Arctic regions are among the most rapidly changing environments on Earth. Especially Arctic coastlines are highly sensitive to climate change. Coastal damages affect communities and wildlife in those areas and increasing erosion leads to higher engineering and relocation costs for coastal villages. Moreover, erosion releases significant amounts of carbon, which can cause a feedback loop that accelerates climate change and coastal erosion even further. As such, detailed examination of coastal ecosystems, including shoreline types and backshore land cover, is necessary.High spatial resolution datasets are required in order to create and validate land cover classifications. Multispectral remote sensing could be a powerful tool for areal retrieval. Sentinel-2 data offers good spatial and temporal resolution and may enable the monitoring of large areas of the Arctic. In this study, a traditional land cover classification (Minimum Distance Algorithm) was compared to a more sophisticated machine learning approach using a Gradient Boosting Machine (XGboost). Eight land cover classes were selected and the classification was tested in study areas along the Yukon Coast, the Chukchi Sea coast, the East Siberian Sea Coast, and the Laptev Sea Coast. The results show that machine learning is superior for coastal mapping in the Arctic using Sentinel-2 data. XGboost achieved an overall classification accuracy ranging from 73.2\% to 87.7\% depending on the region, while the overall accuracy of MDA was slightly lower, ranging from 60.3\% to 81.9\%. Misclassification of land and water occurred for both methods and in all regions and were mainly caused by shadows and spectral confusion between classes. For example, bedrock shadows were classified as water, and boundaries between different land cover classes were difficult to classify.The classification results were further used to extract and map the coastline with attached attributes of target land cover classes. The coastline was defined as border between water and land and semi-automatically extracted. An extended accuracy assessment of the XGBoost results along the coastline showed, that despite classification problems, more than 75% of the land cover in this zone was correctly classified. In addition, visual interpretation of the results showed that the applied methodology can be used to create a more accurate delineation of coastlines in comparison to existing coastline data set from the Global Self-consistent, Hierarchical, High-resolution Geography Database (GSHHG).
Keywords: Fernerkundung
Remote Sensing
URI: https://doi.org/10.34726/hss.2021.71800
http://hdl.handle.net/20.500.12708/17415
DOI: 10.34726/hss.2021.71800
Library ID: AC16200125
Organisation: E120 - Department für Geodäsie und Geoinformation 
Publication Type: Thesis
Hochschulschrift
Appears in Collections:Thesis

Files in this item:


Page view(s)

57
checked on Oct 22, 2021

Download(s)

70
checked on Oct 22, 2021

Google ScholarTM

Check


Items in reposiTUm are protected by copyright, with all rights reserved, unless otherwise indicated.