Title: Agile bus route-timetable simulation using artificial intelligence
Other Titles: Agile Simulation von Bus-Routen und Fahrplänen unter Zuhilfenahme künstlicher Intelligenz
Language: English
Authors: Nazari, Iman 
Qualification level: Diploma
Advisor: Emberger, Günter  
Assisting Advisor: Brezina, Tadej  
Issue Date: 2021
Number of Pages: 120
Qualification level: Diploma
Abstract: 
This thesis assesses and explores a practical transportation model known as the Open Vehicle Routing Problem (OVRP) for urban and regional bus operation systems. The aims of the OVRP are generally to minimize the total number of busses and hence the total travel distance. OVRP can be seen as a Hamiltonian path in which a vehicle returns to the depot (starting point) after servicing the last stop on a route but in a reverse order. We implement and evaluate the combination of Ant Colony Optimization (ACO) and Tabu Search (TS) as a hybrid metaheuristic optimization algorithm in order to solve undirected symmetric open travelling salesman problem to find the shortest path in subgraphs. The benefits of my approach are related to exploring and examining a wide range of possible solutions to the problem within reasonable computational effort. My case study is based on an operational system in a city of the Lower Austria region. The results show, approx. 16% improvement in terms of total number of bus lines and approx. 4% for total operational length. In addition, the system was improved by approx. 12% in terms of the total number of courses, total number of vehicles required to operate in the system, and total travel time per day. To generalize the improvement by considering all the terms defined above, the system was improved by approx. 2% for total travel distance per day. This work shows the potential of applying artificial intelligence metaheuristics algorithms in transportation systems and their benefits, including greatly reduced time and cost of fleet management and bus operation systems.
Keywords: Bus system; Timetable; Artificial intelligence
URI: https://doi.org/10.34726/hss.2021.78002
http://hdl.handle.net/20.500.12708/17419
DOI: 10.34726/hss.2021.78002
Library ID: AC16200219
Organisation: E230 - Institut für Verkehrswissenschaften 
Publication Type: Thesis
Hochschulschrift
Appears in Collections:Thesis

Files in this item:

Show full item record

Page view(s)

9
checked on May 6, 2021

Download(s)

3
checked on May 6, 2021

Google ScholarTM

Check


Items in reposiTUm are protected by copyright, with all rights reserved, unless otherwise indicated.