<div class="csl-bib-body">
<div class="csl-entry">Jawecki, T., & Singh, P. (2022). <i>Unitarity of some barycentric rational approximants </i>. arXiv. https://doi.org/10.34726/3825</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/175690
-
dc.identifier.uri
https://doi.org/10.34726/3825
-
dc.description.abstract
The exponential function maps the imaginary axis to the unit circle and, for many applications, this unitarity property is also desirable from its approximations. We show that this property is conserved not only by the $(k,k)$-rational barycentric interpolant of the exponential on the imaginary axis, but also by $(k,k)$-rational barycentric approximants that minimize a linearized approximation error. These results are a consequence of certain properties of singular vectors of Loewner-type matrices associated to linearized approximation errors. Prominent representatives of this class are rational approximants computed by the adaptive Antoulas--Anderson (AAA) method and the AAA--Lawson method. Our results also lead to a modified procedure with improved numerical stability of the unitarity property and reduced computational cost.
en
dc.language.iso
en
-
dc.rights.uri
http://creativecommons.org/licenses/by-nc-nd/4.0/
-
dc.subject
exponential splitting error estimate
en
dc.subject
unitary
en
dc.subject
rational approximation
en
dc.subject
barycentric formula
en
dc.subject
barycentric formula
en
dc.subject
Loewner matrix
en
dc.subject
AAA algorithm
en
dc.subject
AAA-Lawson algorithm
en
dc.title
Unitarity of some barycentric rational approximants
en
dc.type
Preprint
en
dc.type
Preprint
de
dc.rights.license
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
en
dc.rights.license
Creative Commons Namensnennung - Nicht kommerziell - Keine Bearbeitungen 4.0 International
de
dc.identifier.doi
10.34726/3825
-
dc.identifier.arxiv
2205.10606
-
dc.contributor.affiliation
University of Bath, United Kingdom of Great Britain and Northern Ireland (the)