<div class="csl-bib-body">
<div class="csl-entry">Fritz, C. (2023). <i>Randomized isoperimetric inequalities for Lp-centroid bodies</i> [Diploma Thesis, Technische Universität Wien]. reposiTUm. https://doi.org/10.34726/hss.2023.107842</div>
</div>
-
dc.identifier.uri
https://doi.org/10.34726/hss.2023.107842
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/175775
-
dc.description
Abweichender Titel nach Übersetzung der Verfasserin/des Verfassers
-
dc.description.abstract
This thesis is concerned with the Lp-Busemann-Petty centroid inequality, an affine isoperimetric inequality, which compares the volume of a convex body in n-dimensional Euclidean space with that of its Lp-centroid body as an extension of the classical Busemann-Petty centroid inequality. Isoperimetric-type inequalities not only occupy a central role in the field of geometric convexity but also have numerous applications to fields such as ordinary and partial differential equations, functional analysis, the geometry of numbers, discrete geometry and polytopal approximations, stereology and stochastic geometry, and Minkowskian geometry. On the one hand, we present a direct proof of the Lp-Busemann-Petty centroid inequality by Campiand Gronchi which does not use the Lp-analog of the Petty projection inequality but instead uses shadow systems. On the other hand, we present a randomized version of the same inequality due to Paouris and Pivovarov using an extension of Groemer’s theorem to the class of all probability measures that are absolutely continuous with respect to Lebesgue measure and rearrangement inequalities. Additionally, we present a randomized version of the polar Lp-Busemann-Petty centroid inequality due to Cordero-Erausquin, Fradelizi, Paouris and Pivovarov which combines methods and ideas from both topics above.
en
dc.language
English
-
dc.language.iso
en
-
dc.rights.uri
http://rightsstatements.org/vocab/InC/1.0/
-
dc.subject
convex bodies
en
dc.subject
centroid bodies
en
dc.subject
isoperimetric inequalities
en
dc.subject
stochastic inequalities
en
dc.title
Randomized isoperimetric inequalities for Lp-centroid bodies
en
dc.title.alternative
L tief p
de
dc.title.alternative
Randomisierte Isoperimetrische Ungleichungen für Lp Schwerpunktskörper
de
dc.type
Thesis
en
dc.type
Hochschulschrift
de
dc.rights.license
In Copyright
en
dc.rights.license
Urheberrechtsschutz
de
dc.identifier.doi
10.34726/hss.2023.107842
-
dc.contributor.affiliation
TU Wien, Österreich
-
dc.rights.holder
Christoph Fritz
-
dc.publisher.place
Wien
-
tuw.version
vor
-
tuw.thesisinformation
Technische Universität Wien
-
tuw.publication.orgunit
E104 - Institut für Diskrete Mathematik und Geometrie