Khurjekar, I., Gerstoft, P., Mecklenbräuker, C. F., & Michalopoulou, Z.-H. (2023). Direction-of-Arrival Estimation Using Gaussian Process Interpolation. In ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 1–5). IEEE. https://doi.org/10.1109/ICASSP49357.2023.10094761
E389-02 - Forschungsbereich Wireless Communications E389 - Institute of Telecommunications
-
Erschienen in:
ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
-
ISBN:
978-1-7281-6327-7
-
Datum (veröffentlicht):
2023
-
Veranstaltungsname:
IEEE ICASSP 2023
en
Veranstaltungszeitraum:
4-Jun-2023 - 10-Jun-2023
-
Veranstaltungsort:
Rhodos, Griechenland
-
Umfang:
5
-
Verlag:
IEEE, Piscataway
-
Keywords:
Gaussian Process
en
Abstract:
Gaussian processes (GP’s) have been used to predict acoustic fields by interpolating under-sampled field observations. Using GP interpolation to predict fields is advantageous because of its ability to denoise measurements and for its prediction of likely field outcomes given a certain field coherence, or in GP terminology, a kernel. While there are many design options for a coherence function, in this study we focus on the radial basis function kernel for estimating the direction-of-arrival (DOA) of a plane wave impinging on a uniform linear array. We demonstrate that an array sampled with spacing larger than a half wavelength can benefit from GP interpolation, providing a smaller root mean squared error in comparison to the error of conventional beamforming for DOA estimation.
en
Forschungsschwerpunkte:
Telecommunication: 50% Modeling and Simulation: 25% Sensor Systems: 25%