<div class="csl-bib-body">
<div class="csl-entry">Peruvemba Ramaswamy, V. (2023). <i>Scalable Bayesian network structure learning using SAT-based methods</i> [Dissertation, Technische Universität Wien]. reposiTUm. https://doi.org/10.34726/hss.2023.113249</div>
</div>
-
dc.identifier.uri
https://doi.org/10.34726/hss.2023.113249
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/177665
-
dc.description
Zusammenfassung in deutscher Sprache
-
dc.description.abstract
When it comes to trustworthy predictive models, Bayesian Networks (BNs) play a critical role in the real-world use of predictive models. For instance, BNs see widespread usage in Medicine for diagnosing illnesses, determining causes, estimating effectiveness of potential remedies, etc. Trustworthiness is baked into BNs in contrast to other popular models, thus increasing their appeal. A BN consists of Random Variables (RVs) representing real-world events joined together by arcs which represent their interdependence. One also needs to specify a conditional probability distribution (CPD) table. Hence, learning a BN entails learning the parameter (the CPD tables) and the structure (the directed acyclic graph (DAG)). In this thesis we focus on the problem of BN structure learning (BNSL), which is known to be notoriously hard. Our proposed methods address three important properties of BNs - scalability, tractability and quality - and optimizes them simultaneously. Motivated by real-world settings, our heuristic methods can scale to learn BNs with thousands of RVs. To ensure efficient querying of a BN, we need tractability which we achieve by bounding structural metrics like treewidth. Further, we ensure that quality of the BN doesn't suffer in the process and that the input data is well-represented. We use the SAT-based Local Improvement Method (SLIM) framework to develop several heuristic algorithms which cleverly combine the efficiency of state-of-the-art heuristics with the rigor of a SAT-solver to outperform previous heuristic methods. Due to the overarching goal of practicality, we implemented and tested our algorithms and show that they perform favorably in comparison to previous work.
en
dc.language
English
-
dc.language.iso
en
-
dc.rights.uri
http://rightsstatements.org/vocab/InC/1.0/
-
dc.subject
SAT-encodings
en
dc.subject
Maximum Satisfiability
en
dc.subject
Local Improvement
en
dc.subject
Graph Decompositions
en
dc.subject
Bayesian Networks
en
dc.subject
Prediction Models
en
dc.subject
Heuristic Algorithms
en
dc.subject
Structure Learning
en
dc.subject
Computational Experiments
en
dc.title
Scalable Bayesian network structure learning using SAT-based methods
en
dc.type
Thesis
en
dc.type
Hochschulschrift
de
dc.rights.license
In Copyright
en
dc.rights.license
Urheberrechtsschutz
de
dc.identifier.doi
10.34726/hss.2023.113249
-
dc.contributor.affiliation
TU Wien, Österreich
-
dc.rights.holder
Vaidyanathan Peruvemba Ramaswamy
-
dc.publisher.place
Wien
-
tuw.version
vor
-
tuw.thesisinformation
Technische Universität Wien
-
tuw.publication.orgunit
E192 - Institut für Logic and Computation
-
dc.type.qualificationlevel
Doctoral
-
dc.identifier.libraryid
AC16869963
-
dc.description.numberOfPages
107
-
dc.thesistype
Dissertation
de
dc.thesistype
Dissertation
en
tuw.author.orcid
0000-0002-3101-2085
-
dc.rights.identifier
In Copyright
en
dc.rights.identifier
Urheberrechtsschutz
de
tuw.advisor.staffStatus
staff
-
tuw.advisor.orcid
0000-0001-8994-1656
-
item.grantfulltext
open
-
item.openairecristype
http://purl.org/coar/resource_type/c_db06
-
item.mimetype
application/pdf
-
item.openairetype
doctoral thesis
-
item.openaccessfulltext
Open Access
-
item.languageiso639-1
en
-
item.cerifentitytype
Publications
-
item.fulltext
with Fulltext
-
crisitem.author.dept
E192-01 - Forschungsbereich Algorithms and Complexity