<div class="csl-bib-body">
<div class="csl-entry">Achammer, F. (2023). <i>Decidability of diophantine equations in a theory adjacent to IOpen</i> [Diploma Thesis, Technische Universität Wien]. reposiTUm. https://doi.org/10.34726/hss.2023.110746</div>
</div>
-
dc.identifier.uri
https://doi.org/10.34726/hss.2023.110746
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/177688
-
dc.description
Abweichender Titel nach Übersetzung der Verfasserin/des Verfassers
-
dc.description.abstract
Hilbert’s 10th problem is the question whether there is an algorithm which, given a polynomial with integer coefficients, determines whether it has integer roots. It has been shown that no such algorithm exists as a consequence of the MRDP theorem. In other words: Diophantine satisfiability is undecidable for arithmetic. One can now ask whether the problem of Diophantine satisfiability is decidable for weaker theories of arithmetic. In this thesis we present a novel proof-theoretic approach for deciding Diophantine satisfiability problems. We work in a base arithmetical theory A in the language with successors, predecessors, addition and multiplication and use a result by Shepherdson to define a theory AB which is one axiom schema short of the theory of open induction over A. We show that Diophantine satisfiability of AB is decidable.
en
dc.language
English
-
dc.language.iso
en
-
dc.rights.uri
http://rightsstatements.org/vocab/InC/1.0/
-
dc.subject
mathematical logic
en
dc.subject
arithmetical theories
en
dc.subject
Diophantine equations
en
dc.title
Decidability of diophantine equations in a theory adjacent to IOpen
en
dc.title.alternative
Entscheidbarkeit Diophantischer Gleichungen in einer Theorie nahe an IOpen
de
dc.type
Thesis
en
dc.type
Hochschulschrift
de
dc.rights.license
In Copyright
en
dc.rights.license
Urheberrechtsschutz
de
dc.identifier.doi
10.34726/hss.2023.110746
-
dc.contributor.affiliation
TU Wien, Österreich
-
dc.rights.holder
Fabian Achammer
-
dc.publisher.place
Wien
-
tuw.version
vor
-
tuw.thesisinformation
Technische Universität Wien
-
tuw.publication.orgunit
E104 - Institut für Diskrete Mathematik und Geometrie
-
dc.type.qualificationlevel
Diploma
-
dc.identifier.libraryid
AC16870738
-
dc.description.numberOfPages
57
-
dc.thesistype
Diplomarbeit
de
dc.thesistype
Diploma Thesis
en
dc.rights.identifier
In Copyright
en
dc.rights.identifier
Urheberrechtsschutz
de
tuw.advisor.staffStatus
staff
-
tuw.advisor.orcid
0000-0002-6461-5982
-
item.fulltext
with Fulltext
-
item.mimetype
application/pdf
-
item.openairecristype
http://purl.org/coar/resource_type/c_bdcc
-
item.cerifentitytype
Publications
-
item.openairetype
master thesis
-
item.grantfulltext
open
-
item.openaccessfulltext
Open Access
-
item.languageiso639-1
en
-
crisitem.author.dept
E104-02 - Forschungsbereich Computational Logic
-
crisitem.author.parentorg
E104 - Institut für Diskrete Mathematik und Geometrie