<div class="csl-bib-body">
<div class="csl-entry">Schidler, A. (2023). <i>Scalability for SAT-based combinatorial problem solving</i> [Dissertation, Technische Universität Wien]. reposiTUm. https://doi.org/10.34726/hss.2023.113248</div>
</div>
-
dc.identifier.uri
https://doi.org/10.34726/hss.2023.113248
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/177694
-
dc.description
Zusammenfassung in deutscher Sprache
-
dc.description.abstract
SAT solvers determine whether a given propositional formula is satisfiable. Today’s highly engineered SAT solvers can determine the satisfiability of huge formulas with millions of constraints and thousands of variables. Further, stat- ing other combinatorial problems in terms of propositional satisfiability allows the use of this great SAT-solving performance for a large range of combinatorial problems. Despite the great performance of SAT solvers, scalability becomes an issue whenever the instances become too large or too complex. For complex instances, the SAT solver may not be able to determine satisfiability in a reasonable amount of time and for large instances, the corresponding formula becomes too large, and solving becomes practically impossible. In this thesis, we propose different methods for overcoming these scalability issues. In particular, we discuss examples of efficient encoding design, scalability using a lazy approach, and embedding SAT-based methods into a heuristic approach using SAT-based local improvement (SLIM). These methods are discussed in the context of applications: we propose encodings for computing hypertree width and twin-width; a lazy approach to the directed feedback vertex problem; and SLIM approaches to graph coloring and decision tree induction.
en
dc.language
English
-
dc.language.iso
en
-
dc.rights.uri
http://rightsstatements.org/vocab/InC/1.0/
-
dc.subject
SAT encodings
en
dc.subject
local improvement
en
dc.subject
lazy encoding
en
dc.subject
cegar large neighborhood search
en
dc.subject
metaheuristics
en
dc.subject
decision trees
en
dc.subject
graph coloring
en
dc.subject
twin-width
en
dc.title
Scalability for SAT-based combinatorial problem solving
en
dc.type
Thesis
en
dc.type
Hochschulschrift
de
dc.rights.license
In Copyright
en
dc.rights.license
Urheberrechtsschutz
de
dc.identifier.doi
10.34726/hss.2023.113248
-
dc.contributor.affiliation
TU Wien, Österreich
-
dc.rights.holder
André Schidler
-
dc.publisher.place
Wien
-
tuw.version
vor
-
tuw.thesisinformation
Technische Universität Wien
-
tuw.publication.orgunit
E192 - Institut für Logic and Computation
-
dc.type.qualificationlevel
Doctoral
-
dc.identifier.libraryid
AC16870829
-
dc.description.numberOfPages
177
-
dc.thesistype
Dissertation
de
dc.thesistype
Dissertation
en
tuw.author.orcid
0000-0001-6790-7158
-
dc.rights.identifier
In Copyright
en
dc.rights.identifier
Urheberrechtsschutz
de
tuw.advisor.staffStatus
staff
-
tuw.advisor.orcid
0000-0001-8994-1656
-
item.grantfulltext
open
-
item.openairecristype
http://purl.org/coar/resource_type/c_db06
-
item.mimetype
application/pdf
-
item.openairetype
doctoral thesis
-
item.openaccessfulltext
Open Access
-
item.languageiso639-1
en
-
item.cerifentitytype
Publications
-
item.fulltext
with Fulltext
-
crisitem.author.dept
E192-01 - Forschungsbereich Algorithms and Complexity