<div class="csl-bib-body">
<div class="csl-entry">Lang, T. A. (2021). <i>Games, modalities and analytic proofs in nonclassical logics</i> [Dissertation, Technische Universität Wien]. reposiTUm. https://doi.org/10.34726/hss.2021.92047</div>
</div>
-
dc.identifier.uri
https://doi.org/10.34726/hss.2021.92047
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/18027
-
dc.description.abstract
The present thesis deals with three different topics in the proof theory of nonclassical logics. We first investigate logics which are presented as analytic hypersequent calculi. Using a projection of cutfree hypersequent proofs onto proofs in the sequent calculus, we obtain various strengthenings of the deduction theorem. In the second part we develop a sequent calculus with a game-theoretic underpinning. By stipulating that the use of certain rules triggers costs, we gain expressivity which in turn can be captured by a suitable labelling of the proof rules. We show some syntactic results about the thus obtained labelled sequent calculus. The concluding third part employs the method of provability-preserving syntactic translations to study a deontic modal logic which extends classical modal logic. Our main result is that a substantial fragment of the deontic logic can be reduced to the underlying classical modal logic.
en
dc.language
English
-
dc.language.iso
en
-
dc.rights.uri
http://rightsstatements.org/vocab/InC/1.0/
-
dc.subject
substructural logics
en
dc.subject
proof theory
en
dc.subject
game semantics
en
dc.subject
deontic logic
en
dc.title
Games, modalities and analytic proofs in nonclassical logics
en
dc.title.alternative
Spiele, Modaloperatoren und analytische Beweise in nichtklassischen Logiken
de
dc.type
Thesis
en
dc.type
Hochschulschrift
de
dc.rights.license
In Copyright
en
dc.rights.license
Urheberrechtsschutz
de
dc.identifier.doi
10.34726/hss.2021.92047
-
dc.contributor.affiliation
TU Wien, Österreich
-
dc.rights.holder
Timo Achim Lang
-
dc.publisher.place
Wien
-
tuw.version
vor
-
tuw.thesisinformation
Technische Universität Wien
-
tuw.publication.orgunit
E192 - Institut für Logic and Computation
-
dc.type.qualificationlevel
Doctoral
-
dc.identifier.libraryid
AC16251340
-
dc.description.numberOfPages
128
-
dc.thesistype
Dissertation
de
dc.thesistype
Dissertation
en
dc.rights.identifier
In Copyright
en
dc.rights.identifier
Urheberrechtsschutz
de
tuw.advisor.staffStatus
staff
-
tuw.advisor.orcid
0000-0003-2932-5477
-
item.languageiso639-1
en
-
item.openairetype
doctoral thesis
-
item.grantfulltext
open
-
item.fulltext
with Fulltext
-
item.cerifentitytype
Publications
-
item.mimetype
application/pdf
-
item.openairecristype
http://purl.org/coar/resource_type/c_db06
-
item.openaccessfulltext
Open Access
-
crisitem.author.dept
E192-04 - Forschungsbereich Formal Methods in Systems Engineering