<div class="csl-bib-body">
<div class="csl-entry">Merola, C., Cheng, H.-W., Dworschak, D., Ku, C.-S., Chiang, C.-Y., Renner, F. U., & Valtiner, M. (2019). <i>Nanometer Resolved Real Time Visualization of Acidification and Material Breakdown in Confinement</i>. https://doi.org/10.34726/1481</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/18445
-
dc.identifier.uri
https://doi.org/10.34726/1481
-
dc.description
Preprint version of the open access article Merola, C., Cheng, H., Dworschak, D., Ku, C., Chiang, C., Renner, F. U., & Valtiner, M. (2019). Nanometer Resolved Real Time Visualization of Acidification and Material Breakdown in Confinement. Advanced Materials Interfaces, 6(10), 1802069. https://doi.org/10.1002/admi.201802069
-
dc.description.abstract
Localized surface reactions in confinement are inherently difficult to visualize in real-time. Herein multiple-beam-interferometry (MBI) is extended as a real-time monitoring tool for corrosion of nanometer confined bulk metallic surfaces. The capabilities of MBI are demonstrated, and the initial crevice corrosion mechanism on confined nickel and a Ni75Cr16Fe9 model material is compared. The initiation of crevice corrosion is visualized in real time during linear sweep polarization in a 1 × 10−3 m NaCl solution. Pre- and post-experiment analysis is performed to complementarily characterize the degraded area with atomic force microscopy (AFM), optical microscopy, nano-Laue diffraction (nano-LD), scanning electron microscopy (SEM)/electron backscatter diffraction (EBSD), and X-ray photoelectron spectroscopy (XPS). Overall, Ni75Cr16Fe9 displays a better corrosion resistance; however, MBI imaging reveals 200 nm deep severe localized corrosion of the alloy in the crevice opening. Chromium rich passive films formed on the alloy contribute to accelerated corrosion of the confined alloy by a strongly acidifying dissolution of the passive film in the crevice opening. Nano-LD further reveals preferential crystallographic defect and corrosion migration planes during corrosion. MBI provides nanometer accurate characterization of topologies and degradation in confined spaces. The technique enables the understanding of the initial crevice corrosion mechanism and testing modeling approaches and machine-learning algorithms.
en
dc.description.sponsorship
Europäischer Forschungsrat (ERC)
-
dc.language.iso
en
-
dc.rights.uri
http://creativecommons.org/licenses/by-nc-nd/4.0/
-
dc.subject
crevice corrosion
en
dc.subject
Laue diffraction
en
dc.subject
nickel
en
dc.subject
passive films
en
dc.subject
surface forces apparatus
en
dc.title
Nanometer Resolved Real Time Visualization of Acidification and Material Breakdown in Confinement
en
dc.type
Preprint
en
dc.type
Preprint
de
dc.rights.license
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
en
dc.rights.license
Creative Commons Namensnennung - Nicht kommerziell - Keine Bearbeitungen 4.0 International
de
dc.identifier.doi
10.34726/1481
-
dc.contributor.affiliation
National Synchrotron Radiation Research Center, Taiwan (Province of China)
-
dc.contributor.affiliation
National Synchrotron Radiation Research Center, Taiwan (Province of China)
-
dc.contributor.affiliation
Hasselt University, Belgium
-
dc.relation.grantno
677663
-
dc.rights.holder
Markus Valtiner/ E134
-
tuw.project.title
Ein molekularer Grenzflächenansatz: Dekodierung von einzelnen molekularen Reaktionen und Wechselwirkungen an dynamischen Fest-Flüssigkeitsgrenzflächen