<div class="csl-bib-body">
<div class="csl-entry">Frohner, N. (2023). <i>Advancing state space search for static and dynamic Optimization by parallelization and learning</i> [Dissertation, Technische Universität Wien]. reposiTUm. https://doi.org/10.34726/hss.2023.113960</div>
</div>
-
dc.identifier.uri
https://doi.org/10.34726/hss.2023.113960
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/187422
-
dc.description
Zusammenfassung in deutscher Sprache
-
dc.description.abstract
In this thesis, we aim to advance state space search for static combinatorial optimization and stochastic decision making problems. With the recent rise of data-driven approaches based on machine learning methods and the increase of high-performance computing resources, we have new tools at our disposal to further push the practical limits of existing solution approaches. Driven by successful applications of the well-known heuristic state-space search method beam search, we implement and evaluate a general, data-parallel beam search framework in Julia for static combinatorial optimization problems. We demonstrate substantial speedups on the challenging traveling tournament problem (TTP), the permutation flow- shop problem, and the maximum independent set problem, with medium to high parallel efficiency for sufficiently large problem instances. With large-scale runs, this allows finding many new best feasible solutions for long-standing difficult benchmark instances of the TTP. As a challenging stochastic decision-making problem, we consider a real-world same-hour delivery problem originating from an online supermarket in Vienna, which promises to deliver orders within the hour. There, the task is to automatically dispatch a fleet of vehicles by planning their delivery routes and potential overtime to react to dynamically arriving unknown orders throughout the day, with the objective to maximize customer satisfaction while keeping delivery costs low. We propose and compare various policies based on a double-horizon approach, scenario sampling, surrogate functions, and value function learning, and compare these with myopic baseline policies. A key observation is that the potentially high computational demand of a classical scenario sampling approach can be replaced by an offline training of a machine learning model that is used effectively in the online decision making.
en
dc.language
English
-
dc.language.iso
en
-
dc.rights.uri
http://rightsstatements.org/vocab/InC/1.0/
-
dc.subject
state space search
en
dc.subject
beam search
en
dc.subject
adaptive large neighborhood search
en
dc.subject
data-parallel search
en
dc.subject
traveling tournament problem
en
dc.subject
permutation flowshop problem
en
dc.subject
dynamic and stochastic vehicle routing
en
dc.subject
same-day delivery problems
en
dc.subject
value function approximation
en
dc.title
Advancing state space search for static and dynamic Optimization by parallelization and learning
en
dc.type
Thesis
en
dc.type
Hochschulschrift
de
dc.rights.license
In Copyright
en
dc.rights.license
Urheberrechtsschutz
de
dc.identifier.doi
10.34726/hss.2023.113960
-
dc.contributor.affiliation
TU Wien, Österreich
-
dc.rights.holder
Nikolaus Frohner
-
dc.publisher.place
Wien
-
tuw.version
vor
-
tuw.thesisinformation
Technische Universität Wien
-
tuw.publication.orgunit
E192 - Institut für Logic and Computation
-
dc.type.qualificationlevel
Doctoral
-
dc.identifier.libraryid
AC16894200
-
dc.description.numberOfPages
180
-
dc.thesistype
Dissertation
de
dc.thesistype
Dissertation
en
tuw.author.orcid
0000-0002-0629-9379
-
dc.rights.identifier
In Copyright
en
dc.rights.identifier
Urheberrechtsschutz
de
tuw.advisor.staffStatus
staff
-
tuw.advisor.orcid
0000-0002-3293-177X
-
item.languageiso639-1
en
-
item.openairetype
doctoral thesis
-
item.grantfulltext
open
-
item.fulltext
with Fulltext
-
item.cerifentitytype
Publications
-
item.mimetype
application/pdf
-
item.openairecristype
http://purl.org/coar/resource_type/c_db06
-
item.openaccessfulltext
Open Access
-
crisitem.author.dept
E192-02 - Forschungsbereich Databases and Artificial Intelligence