Pistrol, J., Hager, M., Kopf, F., & Adam, D. (2023). Consideration of the Variable Contact Geometry in Vibratory Roller Compaction. Infrastructures, 8(7), Article 110. https://doi.org/10.3390/infrastructures8070110
E220-02 - Forschungsbereich Grundbau, Boden- und Felsmechanik
-
Journal:
Infrastructures
-
Date (published):
30-Jun-2023
-
Number of Pages:
15
-
Peer reviewed:
Yes
-
Keywords:
Soil Dynamics; Roller Compaction; Intelligent Compaction; Nondestructive Testing; Compaction Control
en
Abstract:
Vibratory rollers are mainly used for the near-surface compaction of granular media for a wide variety of construction tasks. In addition to the pronounced depth effect, vibratory rollers have offered the possibility of work-integrated compaction control (intelligent compaction) for decades. State-of-the-art measurement values for intelligent compaction (ICMVs) only take into account, if at all, a constant geometry of the contact area between the drum and soil. Therefore, this paper introduces a comparatively simple mechanical model, which describes the dynamic interaction between the vibrating drum and the underlying soil during compaction to investigate the influence of the changing geometry of the contact area on the motion behavior of the vibrating drum. The model is tested on realistic soil and machine parameters, and the results of the simulation with varying drum contact geometry are compared to a conventional simulation with a fixed contact geometry. The analysis shows that only a consideration of the varying drum contact geometry can map the dynamic interaction between the vibrating drum and soil sufficiently and provide a motion behavior of the drum that is in good accordance with the field measurements.