<div class="csl-bib-body">
<div class="csl-entry">Schwaiger, A. (2023). <i>Statistical models for multivariate (compositional) count time series</i> [Diploma Thesis, Technische Universität Wien]. reposiTUm. https://doi.org/10.34726/hss.2023.112986</div>
</div>
-
dc.identifier.uri
https://doi.org/10.34726/hss.2023.112986
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/188295
-
dc.description.abstract
In this thesis, we analyse and compare two approaches for multivariate count data times eries with an excessive amount of zeros. The first approach belongs to the class of generalised linear models (GLM) and fits a univariate integer-valued generalized autoregressive conditional heteroskedasticity model of order (p,q) (INGARCH(p,q) model) for each dimension. The second approach is based on compositional data analysis (CoDA)and uses the relative structure of our data to build a vectorised autoregressive (VAR)model from it. In addition, we also consider alternative options like zero-inflated models (ZIM) and integer-valued autoregressive (INAR) models. Providing the mathematical background for the INGARCH(p,q) and CoDA approach and exploring different para-meter settings for them, we evaluate their performance on real world data and compare different tuning options. We then introduce an error measure for comparison and use it to compare the performance on different time series. We provide a handbook of our analysis in the statistical software R and present the used packages and functions. At last, we show the results of our analysis. All models outperform the naive random walk model, but they cannot take all three major characteristics, integer-valued, multivariate and excessive amount of zeros, simultaneously into account
en
dc.language
English
-
dc.language.iso
en
-
dc.rights.uri
http://rightsstatements.org/vocab/InC/1.0/
-
dc.subject
Time series
en
dc.subject
Compositional data
en
dc.title
Statistical models for multivariate (compositional) count time series
en
dc.type
Thesis
en
dc.type
Hochschulschrift
de
dc.rights.license
In Copyright
en
dc.rights.license
Urheberrechtsschutz
de
dc.identifier.doi
10.34726/hss.2023.112986
-
dc.contributor.affiliation
TU Wien, Österreich
-
dc.rights.holder
Alexander Schwaiger
-
dc.publisher.place
Wien
-
tuw.version
vor
-
tuw.thesisinformation
Technische Universität Wien
-
tuw.publication.orgunit
E105 - Institut für Stochastik und Wirtschaftsmathematik
-
dc.type.qualificationlevel
Diploma
-
dc.identifier.libraryid
AC16944448
-
dc.description.numberOfPages
79
-
dc.thesistype
Diplomarbeit
de
dc.thesistype
Diploma Thesis
en
dc.rights.identifier
In Copyright
en
dc.rights.identifier
Urheberrechtsschutz
de
tuw.advisor.staffStatus
staff
-
tuw.advisor.orcid
0000-0002-8014-4682
-
item.openaccessfulltext
Open Access
-
item.grantfulltext
open
-
item.openairecristype
http://purl.org/coar/resource_type/c_bdcc
-
item.fulltext
with Fulltext
-
item.openairetype
master thesis
-
item.cerifentitytype
Publications
-
item.mimetype
application/pdf
-
item.languageiso639-1
en
-
crisitem.author.dept
E105 - Institut für Stochastik und Wirtschaftsmathematik