<div class="csl-bib-body">
<div class="csl-entry">Moser, B. (2023). <i>Adaptive mesh refinement for finite element methods with machine learning</i> [Diploma Thesis, Technische Universität Wien]. reposiTUm. https://doi.org/10.34726/hss.2023.114608</div>
</div>
-
dc.identifier.uri
https://doi.org/10.34726/hss.2023.114608
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/188802
-
dc.description
Abweichender Titel nach Übersetzung der Verfasserin/des Verfassers
-
dc.description.abstract
It has been shown that neural networks exist that provide at least as good results for adaptive mesh refinement in finite element methods as current optimal mesh refinement strategies and that they are problem independent. This master thesis is dedicated to the experimental exploration of these theoretical results. Additionally, the work includes a theoretical overview of neural networks, also covering the ability of neural networks to approximate splines and polynomials effectively, as well as an explanation of the finite element method. The primary objective of this work is the design and implementation of a neural network suitable for adaptive mesh refinement. While the outcomes are not entirely satisfactory, they suggest that with additional effort, advancements could be achieved. Another emphasis is placed on evaluating whether a neural network can effectively learn the residual error estimator for the Poisson problem, a goal that has been successfully realized. The thesis also addresses the formulation of an optimization approach for the neural network, tailored to mesh refinement. The outcomes of this optimization endeavor are partially affirmative, indicating that a similar approach might hold the potential to enhance mesh refinement procedures. Overall, this master's thesis contributes to expanding the comprehension of neural network applications in numerical mathematics. The experimental scrutiny of the presented methodologies and the partial successes attained in the neural network's development underscore the promise of further research and optimization within this domain.
en
dc.language
English
-
dc.language.iso
en
-
dc.rights.uri
http://rightsstatements.org/vocab/InC/1.0/
-
dc.subject
Machinelles Lernen
de
dc.subject
Adaptive Netzverfeinerung
de
dc.subject
machine learning
en
dc.subject
adaptive mesh refinement
en
dc.title
Adaptive mesh refinement for finite element methods with machine learning
en
dc.title.alternative
Adaptive Netzverfeinerung für Finite Element Methoden mit Machinellem Lernen
de
dc.type
Thesis
en
dc.type
Hochschulschrift
de
dc.rights.license
In Copyright
en
dc.rights.license
Urheberrechtsschutz
de
dc.identifier.doi
10.34726/hss.2023.114608
-
dc.contributor.affiliation
TU Wien, Österreich
-
dc.rights.holder
Benedikt Moser
-
dc.publisher.place
Wien
-
tuw.version
vor
-
tuw.thesisinformation
Technische Universität Wien
-
tuw.publication.orgunit
E101 - Institut für Analysis und Scientific Computing
-
dc.type.qualificationlevel
Diploma
-
dc.identifier.libraryid
AC16961402
-
dc.description.numberOfPages
62
-
dc.thesistype
Diplomarbeit
de
dc.thesistype
Diploma Thesis
en
dc.rights.identifier
In Copyright
en
dc.rights.identifier
Urheberrechtsschutz
de
tuw.advisor.staffStatus
staff
-
item.languageiso639-1
en
-
item.openairetype
master thesis
-
item.grantfulltext
open
-
item.fulltext
with Fulltext
-
item.cerifentitytype
Publications
-
item.mimetype
application/pdf
-
item.openairecristype
http://purl.org/coar/resource_type/c_bdcc
-
item.openaccessfulltext
Open Access
-
crisitem.author.dept
E101 - Institut für Analysis und Scientific Computing