<div class="csl-bib-body">
<div class="csl-entry">Bécache, É., Kachanovska, M., & Wess, M. (2023). Convergence analysis of time-domain PMLS for 2D electromagnetic wave propagation in dispersive waveguides. <i>ESAIM: Mathematical Modelling and Numerical Analysis</i>, <i>57</i>(4), 2451–2491. https://doi.org/10.1051/m2an/2023060</div>
</div>
-
dc.identifier.issn
2822-7840
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/189344
-
dc.description.abstract
This work is dedicated to the analysis of generalized perfectly matched layers (PMLs) for 2D electromagnetic wave propagation in dispersive waveguides. Under quite general assumptions on frequency-dependent dielectric permittivity and magnetic permeability we prove convergence estimates in homogeneous waveguides and show that the PML error decreases exponentially with respect to the absorption parameter and the length of the absorbing layer. The optimality of this error estimate is studied both numerically and analytically. Finally, we demonstrate that in the case when the waveguide contains a heterogeneity supported away from the absorbing layer, instabilities may occur, even in the case of the non-dispersive media. Our findings are illustrated by numerical experiments.
en
dc.language.iso
en
-
dc.publisher
EDP Sciences
-
dc.relation.ispartof
ESAIM: Mathematical Modelling and Numerical Analysis
-
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
-
dc.subject
Perfectly matched layers
en
dc.subject
Time-dependent Maxwell equations
en
dc.subject
Laplace transform
en
dc.subject
Waveguides
en
dc.subject
Dispersive media
en
dc.subject
Metamaterials
en
dc.title
Convergence analysis of time-domain PMLS for 2D electromagnetic wave propagation in dispersive waveguides
en
dc.type
Article
en
dc.type
Artikel
de
dc.rights.license
Creative Commons Namensnennung 4.0 International
de
dc.rights.license
Creative Commons Attribution 4.0 International
en
dc.contributor.affiliation
Institut Polytechnique de Paris, France
-
dc.contributor.affiliation
Institut Polytechnique de Paris, France
-
dc.description.startpage
2451
-
dc.description.endpage
2491
-
dcterms.dateSubmitted
2022-12-22
-
dc.rights.holder
The authors
-
dc.type.category
Original Research Article
-
tuw.container.volume
57
-
tuw.container.issue
4
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
wb.publication.intCoWork
International Co-publication
-
tuw.researchTopic.id
C4
-
tuw.researchTopic.name
Mathematical and Algorithmic Foundations
-
tuw.researchTopic.value
100
-
dcterms.isPartOf.title
ESAIM: Mathematical Modelling and Numerical Analysis
-
tuw.publication.orgunit
E101-03-1 - Forschungsgruppe Computational Mathematics in Engineering
-
tuw.publisher.doi
10.1051/m2an/2023060
-
dc.date.onlinefirst
2023-07-27
-
dc.identifier.eissn
2804-7214
-
dc.identifier.libraryid
AC17204031
-
dc.description.numberOfPages
41
-
tuw.author.orcid
0000-0001-9991-9874
-
tuw.author.orcid
0000-0001-6323-0821
-
dc.rights.identifier
CC BY 4.0
de
dc.rights.identifier
CC BY 4.0
en
wb.sci
true
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
100
-
item.openaccessfulltext
Open Access
-
item.cerifentitytype
Publications
-
item.languageiso639-1
en
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
item.grantfulltext
open
-
item.fulltext
with Fulltext
-
item.mimetype
application/pdf
-
item.openairetype
research article
-
crisitem.author.dept
Institut Polytechnique de Paris, France
-
crisitem.author.dept
Institut Polytechnique de Paris, France
-
crisitem.author.dept
E101-03-1 - Forschungsgruppe Computational Mathematics in Engineering
-
crisitem.author.orcid
0000-0001-9991-9874
-
crisitem.author.orcid
0000-0001-6323-0821
-
crisitem.author.parentorg
E101-03 - Forschungsbereich Scientific Computing and Modelling