<div class="csl-bib-body">
<div class="csl-entry">Toth, T. (2023). <i>U-Net based classification of flow cytometry data</i> [Diploma Thesis, Technische Universität Wien]. reposiTUm. https://doi.org/10.34726/hss.2023.101968</div>
</div>
-
dc.identifier.uri
https://doi.org/10.34726/hss.2023.101968
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/189362
-
dc.description.abstract
Acute lymphoblastic leukemia (ALL) is the most common type of malignant disease among children. In the case of malignant diseases, abnormal cells can divide uncontrollably and spread to surrounding cells. Chemotherapy is the most common treatment for ALL. Since every patient responds differently to the therapy, it needs to be controlled and individualised. Minimal Residual Disease (MRD) indicates the patient’s response to the treatment. Based on this value the intensity or length of treatment can be modified. Flow cytometry is a laser-based method which can detect MRD. There are several methods for the automatic detection of cancer cell populations based on flow cytometry data with astonishing results but have only one striking disadvantage: the lack of interpretability of the processes. In this thesis, we apply an image segmentation method, the U-Net model, to solve this problem in a visual manner so that all steps of the gating procedure can be easily comprehended. The results meet the performance of the state-of-the-art methods with the additional advantage of easy tractability through the visual representation of the gating procedure.
en
dc.language
English
-
dc.language.iso
en
-
dc.rights.uri
http://rightsstatements.org/vocab/InC/1.0/
-
dc.subject
U-Net
en
dc.subject
image segmentation
en
dc.subject
Flow Cytometry
en
dc.subject
automation
en
dc.subject
machine learning
en
dc.subject
mrd
en
dc.title
U-Net based classification of flow cytometry data
en
dc.title.alternative
U-Net basierte Klassifikation von Durchflusszytometrie-Daten
de
dc.type
Thesis
en
dc.type
Hochschulschrift
de
dc.rights.license
In Copyright
en
dc.rights.license
Urheberrechtsschutz
de
dc.identifier.doi
10.34726/hss.2023.101968
-
dc.contributor.affiliation
TU Wien, Österreich
-
dc.rights.holder
Timea Toth
-
dc.publisher.place
Wien
-
tuw.version
vor
-
tuw.thesisinformation
Technische Universität Wien
-
tuw.publication.orgunit
E193 - Institut für Visual Computing and Human-Centered Technology