<div class="csl-bib-body">
<div class="csl-entry">Gao, X., Appel, P., Friis, N., Ringbauer, M., & Huber, M. (2023). On the role of entanglement in qudit-based circuit compression. <i>Quantum</i>, <i>7</i>, Article 1141. https://doi.org/10.22331/q-2023-10-16-1141</div>
</div>
-
dc.identifier.issn
2521-327X
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/189377
-
dc.description.abstract
Gate-based universal quantum computation is formulated in terms of two types of operations: local single-qubit gates, which are typically easily implementable, and two-qubit entangling gates, whose faithful implementation remains one of the major experimental challenges since it requires controlled interactions between individual systems. To make the most of quantum hardware it is crucial to process information in the most efficient way. One promising avenue is to use higher-dimensional systems, qudits, as the fundamental units of quantum information, in order to replace a fraction of the qubit-entangling gates with qudit-local gates. Here, we show how the complexity of multi-qubit circuits can be lowered significantly by employing qudit encodings, which we quantify by considering exemplary circuits with exactly known (multi-qubit) gate complexity. We discuss general principles for circuit compression, derive upper and lower bounds on the achievable advantage, and highlight the key role played by entanglement and the available gate set. Explicit experimental schemes for photonic as well as for trapped-ion implementations are provided and demonstrate a significant expected gain in circuit performance for both platforms.
en
dc.description.sponsorship
FWF Fonds zur Förderung der wissenschaftlichen Forschung (FWF)
-
dc.description.sponsorship
FWF Fonds zur Förderung der wissenschaftlichen Forschung (FWF)
-
dc.description.sponsorship
European Commission
-
dc.language.iso
en
-
dc.publisher
Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften
-
dc.relation.ispartof
Quantum
-
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
-
dc.subject
Quantum computing
en
dc.subject
high-dimensional quantum systems
en
dc.subject
entanglement
en
dc.title
On the role of entanglement in qudit-based circuit compression
en
dc.type
Article
en
dc.type
Artikel
de
dc.rights.license
Creative Commons Namensnennung 4.0 International
de
dc.rights.license
Creative Commons Attribution 4.0 International
en
dc.contributor.affiliation
University of Ottawa, Canada
-
dc.contributor.affiliation
Austrian Academy of Sciences, Austria
-
dc.contributor.affiliation
Universität Innsbruck, Austria
-
dc.relation.grantno
P 31339
-
dc.relation.grantno
P 36478
-
dc.relation.grantno
101043705
-
dcterms.dateSubmitted
2023-03
-
dc.type.category
Original Research Article
-
tuw.container.volume
7
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
wb.publication.intCoWork
International Co-publication
-
tuw.project.title
Resources for flexible quantum information processing
-
tuw.project.title
Verschränkungsbasierte Zertifizierung von Quantentechnologie
-
tuw.project.title
Control and complexity in quantum statistical mechanics
-
tuw.researchTopic.id
Q1
-
tuw.researchTopic.id
C5
-
tuw.researchTopic.id
Q5
-
tuw.researchTopic.name
Photonics
-
tuw.researchTopic.name
Computer Science Foundations
-
tuw.researchTopic.name
Design and Engineering of Quantum Systems
-
tuw.researchTopic.value
20
-
tuw.researchTopic.value
30
-
tuw.researchTopic.value
50
-
dcterms.isPartOf.title
Quantum
-
tuw.publication.orgunit
E141-08 - Forschungsbereich Quantum Optics and Quantum Information