Daniilidis, A., & Tapia Garcia, S. (2023). Oriented Calmness and Sweeping Process Dynamics. Mathematics of Operations Research. https://doi.org/10.1287/moor.2021.0269
Daniilidis and Drusviatskiy, in 2017, extended the celebrated Kurdyka–Łojasiewicz inequality from definable functions to definable multivalued maps by establishing that the coderivative mapping admits a desingularization around every critical value. As was the case in the gradient dynamics, this desingularization yields a uniform control of the lengths of all bounded orbits of the corresponding sweeping process. In this paper, working outside the framework of o-minimal geometry, we characterize the existence of a desingularization for the coderivative in terms of the behavior of the sweeping process orbits and the integrability of the talweg function. These results are close in spirit with the ones in Bolte et al., 2010, in which characterizations for the desingularization of the (sub)gradient of functions is obtained.
en
Project title:
Unilateralität und Asymmetrie in der Variationsanalyse: P 36344N (FWF Fonds zur Förderung der wissenschaftlichen Forschung (FWF))
-
Project (external):
Fondo Nacional de Desarrollo Científico y Tecnológico Centro de Modelamiento Matemático Centro de Modelamiento Matemático Agencia Nacional de Investigación y Desarrollo (Chile)-Programa de Fortalecimiento de Capital Humano Académico Doctorado Nacional
-
Project ID:
Grant 1211217 Grant FB210005 Grant FB210005 Grant 2018-21181905