<div class="csl-bib-body">
<div class="csl-entry">Hecher, M. (2021). <i>Advanced Tools and Methods for Treewidth-Based Problem Solving</i> [Dissertation, Technische Universität Wien]. reposiTUm. https://doi.org/10.34726/hss.2021.97063</div>
</div>
-
dc.identifier.uri
https://doi.org/10.34726/hss.2021.97063
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/18975
-
dc.description
Arbeit an der Bibliothek noch nicht eingelangt - Daten nicht geprüft
-
dc.description
Abweichender Titel nach Übersetzung der Verfasserin/des Verfassers
-
dc.description.abstract
In the last decades, there was a notable progress in solving the well-known Boolean satisfiability (Sat) problem, which can be witnessed by powerful Sat solvers. One of the reasons why these solvers are so fast are structural properties of instances that are utilized by the solver’s interna. This thesis deals with the well-studied structural property treewidth, which measures the closeness of an instance to being a tree. In fact, there are many problems parameterized by treewidth that are solveable in polynomial time in the instance size when parameterized by treewidth. In this work, we study advanced treewidth-based methods and tools for problems in knowledge represenation and reasoning (KR). Thereby, we provide means to establish precise runtime results (upper bounds) for canonical problems relevant to KR. Then, we present a new type of problem reduction, which we call decomposition-guided (DG) that allows us to precisely monitor the treewidth when reducing from one problem to another problem. This new reduction type will be the basis for a long-open lower bound result for quantified Boolean formulas and allows us to design a new methodology for establishing runtime lower bounds for problems parameterized by treewidth. Finally, despite these lower bounds, we provide an efficient implementation of algorithms that adhere to treewidth. Our approach finds suitable abstractions of instances, which are subsequently refined in a recursive fashion, and it uses Sat solvers for solving subproblems. It turns out that our resulting solver is quite competitive for two canonical counting problems related to Sat.
en
dc.language
English
-
dc.language.iso
en
-
dc.rights.uri
http://rightsstatements.org/vocab/InC/1.0/
-
dc.subject
Algorithms
en
dc.subject
Answer Set Programming
en
dc.subject
Artificial Intelligence
en
dc.subject
Computational Complexity
en
dc.subject
Dynamic Programming
en
dc.subject
Exponential Time Hypothesis
en
dc.subject
Knowledge Representation and Reasoning
en
dc.subject
Lower Bounds
en
dc.subject
Parameterized Complexity
en
dc.subject
Treewidth
en
dc.title
Advanced Tools and Methods for Treewidth-Based Problem Solving
en
dc.type
Thesis
en
dc.type
Hochschulschrift
de
dc.rights.license
In Copyright
en
dc.rights.license
Urheberrechtsschutz
de
dc.identifier.doi
10.34726/hss.2021.97063
-
dc.contributor.affiliation
TU Wien, Österreich
-
dc.rights.holder
Markus Hecher
-
dc.publisher.place
Wien
-
tuw.version
vor
-
tuw.thesisinformation
Technische Universität Wien
-
dc.contributor.assistant
Schaub, Torsten
-
tuw.publication.orgunit
E192 - Institut für Logic and Computation
-
dc.type.qualificationlevel
Doctoral
-
dc.identifier.libraryid
AC16395356
-
dc.description.numberOfPages
184
-
dc.thesistype
Dissertation
de
dc.thesistype
Dissertation
en
tuw.author.orcid
0000-0003-0131-6771
-
dc.rights.identifier
In Copyright
en
dc.rights.identifier
Urheberrechtsschutz
de
tuw.advisor.staffStatus
staff
-
item.openaccessfulltext
Open Access
-
item.cerifentitytype
Publications
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_18cf
-
item.openairecristype
http://purl.org/coar/resource_type/c_18cf
-
item.fulltext
with Fulltext
-
item.grantfulltext
open
-
item.languageiso639-1
en
-
item.openairetype
Thesis
-
item.openairetype
Hochschulschrift
-
crisitem.author.dept
E192-02 - Forschungsbereich Databases and Artificial Intelligence