<div class="csl-bib-body">
<div class="csl-entry">Du, Z. P., Kofler, S., Ritzberger, D., Jakubek, S., & Hametner, C. (2023). Optimal design of experiments model predictive controller. In <i>22nd IFAC World Congress. Yokohama, Japan, July 9-14, 2023. Proceedings</i> (pp. 11173–11178). Elsevier. https://doi.org/10.1016/j.ifacol.2023.10.839</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/189921
-
dc.description.abstract
System investigations such as simulation, diagnosis, and control require well-identified models. This work proposes an optimal design of experiments model predictive controller (MPC) to obtain experiments for identification. The main contribution is an MPC formulation with a target-oriented implementation of the parameter sensitivity (Fisher information), which remains a convex quadratic problem. Computers can optimally and efficiently solve quadratic problems, including constraints, and the method is demonstrated with a linear cathode model of a polymer electrolyte membrane fuel cell. The MPC is demonstrated in simulations, including disturbances, and significantly improves the parameter identifiability compared to a non-optimized experiment.
en
dc.description.sponsorship
FFG - Österr. Forschungsförderungs- gesellschaft mbH
-
dc.language.iso
en
-
dc.relation.ispartofseries
IFAC-PapersOnLine
-
dc.rights.uri
http://creativecommons.org/licenses/by-nc-nd/4.0/
-
dc.subject
Experiment design
en
dc.subject
Identifiability
en
dc.subject
Input and excitation design
en
dc.subject
Intelligent control of power systems
en
dc.subject
Optimal control theory
en
dc.subject
Optimal operation and control of power systems
en
dc.title
Optimal design of experiments model predictive controller
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.rights.license
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
en
dc.rights.license
Creative Commons Namensnennung - Nicht kommerziell - Keine Bearbeitungen 4.0 International