<div class="csl-bib-body">
<div class="csl-entry">Braukhoff, M., Huber, F., & Jüngel, A. (2023). Global martingale solutions for stochastic Shigesada–Kawasaki–Teramoto population models. <i>Stochastics and Partial Differential Equations: Analysis and Computations</i>. https://doi.org/10.1007/s40072-023-00289-7</div>
</div>
-
dc.identifier.issn
2194-0401
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/190429
-
dc.description.abstract
The existence of global nonnegative martingale solutions to cross-diffusion systems of Shigesada–Kawasaki–Teramoto type with multiplicative noise is proven. The model describes the stochastic segregation dynamics of an arbitrary number of population species in a bounded domain with no-flux boundary conditions. The diffusion matrix is generally neither symmetric nor positive semidefinite, which excludes standard methods for evolution equations. Instead, the existence proof is based on the entropy structure of the model, a novel regularization of the entropy variable, higher-order moment estimates, and fractional time regularity. The regularization technique is generic and is applied to the population system with self-diffusion in any space dimension and without self-diffusion in two space dimensions.
en
dc.description.sponsorship
FWF - Österr. Wissenschaftsfonds
-
dc.description.sponsorship
FWF - Österr. Wissenschaftsfonds
-
dc.description.sponsorship
FWF - Österr. Wissenschaftsfonds
-
dc.description.sponsorship
European Commission
-
dc.language.iso
en
-
dc.publisher
Springer
-
dc.relation.ispartof
Stochastics and Partial Differential Equations: Analysis and Computations
-
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
-
dc.subject
Cross diffusion
en
dc.subject
Entropy method
en
dc.subject
Martingale solutions
en
dc.subject
Multiplicative noise
en
dc.subject
Population dynamics
en
dc.subject
Tightness of laws
en
dc.title
Global martingale solutions for stochastic Shigesada–Kawasaki–Teramoto population models