<div class="csl-bib-body">
<div class="csl-entry">Angleitner, N., Faustmann, M., & Melenk, J. M. (2023). H-inverses for RBF interpolation. <i>Advances in Computational Mathematics</i>, <i>49</i>(6), Article 85. https://doi.org/10.1007/s10444-023-10069-5</div>
</div>
-
dc.identifier.issn
1019-7168
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/190430
-
dc.description.abstract
We consider the interpolation problem for a class of radial basis functions (RBFs) that includes the classical polyharmonic splines (PHS). We show that the inverse of the system matrix for this interpolation problem can be approximated at an exponential rate in the block rank in the H-matrix format, if the block structure of the H-matrix arises from a standard clustering algorithm.