<div class="csl-bib-body">
<div class="csl-entry">Ellmenreich, J. (2021). <i>A mass conserving mixed stress-strain rate finite element method for non-Newtonian fluid simulations</i> [Diploma Thesis, Technische Universität Wien]. reposiTUm. https://doi.org/10.34726/hss.2021.95386</div>
</div>
-
dc.identifier.uri
https://doi.org/10.34726/hss.2021.95386
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/19043
-
dc.description.abstract
Many non-Newtonian models assume a non-linear relation between the deviatoric stress tensor τ and the rate-of-strain tensor ε(u), which is not necessarily given in explicit form. Therefore the requirement on a finite element method is the capability to capture the behaviour of the non-linear constitutive relation.Inspired by the work of [GLS19, GLS20] and assuming incompressible, stationary, is other- mal, laminar flow, we present a new mixed finite element method by introducing a variable for the rate-of-strain tensor ε, such that the embedding of a general implicit constitutive relation of the form G(τ,ε) := 0 is very natural. Thus making it suitable for the simula- tion of a broader range of non-Newtonian fluids.We prove solvability of the new discrete variational formulation in a two-dimensional Newtonian setting by showing continuity of the bilinear forms, coercivity on the kernel and the discrete Ladyzhenskaya–Babuska–Brezzi condition. By construction our newly introduced mixed finite element approximates the velocity u in an exactly divergence free matter. This fact results in a property known as pressure robustness.Ultimately, we perform some non-Newtonian numerical experiments in a two-dimensional channel and illustrate the achieved L2-errors in comparison to various other standard mixed finite elements.
en
dc.language
English
-
dc.language.iso
en
-
dc.rights.uri
http://rightsstatements.org/vocab/InC/1.0/
-
dc.subject
Non-Newtonian Fluids
en
dc.subject
Mixed Finite Elements
en
dc.title
A mass conserving mixed stress-strain rate finite element method for non-Newtonian fluid simulations
en
dc.type
Thesis
en
dc.type
Hochschulschrift
de
dc.rights.license
In Copyright
en
dc.rights.license
Urheberrechtsschutz
de
dc.identifier.doi
10.34726/hss.2021.95386
-
dc.contributor.affiliation
TU Wien, Österreich
-
dc.rights.holder
Jan Ellmenreich
-
dc.publisher.place
Wien
-
tuw.version
vor
-
tuw.thesisinformation
Technische Universität Wien
-
dc.contributor.assistant
Lederer, Philip Lukas
-
tuw.publication.orgunit
E101 - Institut für Analysis und Scientific Computing
-
dc.type.qualificationlevel
Diploma
-
dc.identifier.libraryid
AC16402400
-
dc.description.numberOfPages
84
-
dc.thesistype
Diplomarbeit
de
dc.thesistype
Diploma Thesis
en
dc.rights.identifier
In Copyright
en
dc.rights.identifier
Urheberrechtsschutz
de
tuw.advisor.staffStatus
staff
-
tuw.assistant.staffStatus
staff
-
item.languageiso639-1
en
-
item.openairetype
master thesis
-
item.grantfulltext
open
-
item.fulltext
with Fulltext
-
item.cerifentitytype
Publications
-
item.mimetype
application/pdf
-
item.openairecristype
http://purl.org/coar/resource_type/c_bdcc
-
item.openaccessfulltext
Open Access
-
crisitem.author.dept
E101-03-1 - Forschungsgruppe Computational Mathematics in Engineering
-
crisitem.author.parentorg
E101-03 - Forschungsbereich Scientific Computing and Modelling