<div class="csl-bib-body">
<div class="csl-entry">Chen, X., Jüngel, A., & Wang, L. (2023). The Shigesada–Kawasaki–Teramoto cross-diffusion system beyond detailed balance. <i>Journal of Differential Equations</i>, <i>360</i>, 260–286. https://doi.org/10.1016/j.jde.2023.02.048</div>
</div>
-
dc.identifier.issn
0022-0396
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/190502
-
dc.description.abstract
The existence of global weak solutions to the cross-diffusion model of Shigesada, Kawasaki, and Teramoto for an arbitrary number of species is proved. The model consists of strongly coupled parabolic equations for the population densities in a bounded domain with no-flux boundary conditions, and it describes the dynamics of the segregation of the population species. The diffusion matrix is neither symmetric nor positive semidefinite. A new logarithmic entropy allows for an improved condition on the coefficients of heavily nonsymmetric diffusion matrices, without imposing the detailed-balance condition that is often assumed in the literature. Furthermore, the large-time convergence of the solutions to the constant steady state is proved by using the relative entropy associated to the logarithmic entropy.
en
dc.language.iso
en
-
dc.publisher
ACADEMIC PRESS INC ELSEVIER SCIENCE
-
dc.relation.ispartof
Journal of Differential Equations
-
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
-
dc.subject
Cross-diffusion
en
dc.subject
Entropy method
en
dc.subject
Global existence
en
dc.subject
Large-time behavior of solutions
en
dc.subject
Population dynamics
en
dc.subject
Relative entropy
en
dc.subject
Weak solutions
en
dc.title
The Shigesada–Kawasaki–Teramoto cross-diffusion system beyond detailed balance