<div class="csl-bib-body">
<div class="csl-entry">Weibel, J.-B., Sebeto, P., Thalhammer, S., & Vincze, M. (2023). Challenges of Depth Estimation for Transparent Objects. In G. Bebis, G. Ghiasi, Y. Fang, A. Sharf, Y. Dong, C. Weaver, Z. Leo, J. J. LaViola Jr., & L. Kohli (Eds.), <i>Advances in Visual Computing : 18th International Symposium, ISVC 2023, Lake Tahoe, NV, USA, October 16–18, 2023. Proceedings, Part I</i> (pp. 277–288). Springer. https://doi.org/10.34726/5311</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/190761
-
dc.identifier.uri
https://doi.org/10.34726/5311
-
dc.description.abstract
Transparent objects and surfaces are pervasive in man-made environments and need to be considered in any vision system. Accurate depth data is a key factor for such systems reliability, requiring transparency to be inferred, due to the sensing challenges. However, the current state-of-the-art methods to predict the depth of such objects are not reliable enough to ensure safe operation of robots in arbitrary complex scenes. In order to better understand and improve upon existing solutions, we evaluate the performance of a variety of depth estimation methods. Doing so, we disentangle the different factors impacting their performance. Among our findings, neural radiance fields offer the best accuracy, but are very sensitive to the number of images used to understand the scene, and do not benefit from any level of object understanding to help them fill in the gaps.
en
dc.description.sponsorship
European Commission
-
dc.language.iso
en
-
dc.relation.ispartofseries
Lecture Notes in Computer Science
-
dc.rights.uri
http://rightsstatements.org/vocab/InC/1.0/
-
dc.subject
Object recognition
en
dc.title
Challenges of Depth Estimation for Transparent Objects
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.rights.license
Urheberrechtsschutz
de
dc.rights.license
In Copyright
en
dc.identifier.doi
10.34726/5311
-
dc.relation.isbn
978-3-031-47969-4
-
dc.relation.doi
10.1007/978-3-031-47969-4
-
dc.relation.issn
0302-9743
-
dc.description.startpage
277
-
dc.description.endpage
288
-
dc.relation.grantno
101017089
-
dc.type.category
Full-Paper Contribution
-
dc.relation.eissn
1611-3349
-
tuw.booktitle
Advances in Visual Computing : 18th International Symposium, ISVC 2023, Lake Tahoe, NV, USA, October 16–18, 2023. Proceedings, Part I
-
tuw.container.volume
14361
-
tuw.book.ispartofseries
Lecture Notes in Computer Science
-
tuw.relation.publisher
Springer
-
tuw.relation.publisherplace
Cham
-
tuw.project.title
Verfolgbare Roboter Handhabung von sterilen medizinischen Produkten