<div class="csl-bib-body">
<div class="csl-entry">Stanger, L., Schirrer, A., Bartik, A., & Kozek, M. (2023). Minimum-Variance Model Predictive Control for Dual Fluidized Bed Circulation Control. In H. Ishii, Y. Ebihara, J. Imura, & M. Yamakita (Eds.), <i>22nd IFAC World Congress. Yokohama, Japan, July 9-14, 2023. Proceedings</i> (pp. 2701–2706). Elsevier. https://doi.org/10.1016/j.ifacol.2023.10.1364</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/190934
-
dc.description.abstract
Dual fluidized bed steam gasification enables the production of gaseous energy carriers from woody biomass or biogenic residues. The circulation of bed material in dual fluidized bed gasifiers strongly affects the process behavior. Therefore, precise control of the bed material circulation is desired. This paper presents a control algorithm addressing two aspects of the given problem setting: On the one hand, redundant control actuators are available. Typically, there are several air streams to the reactors influencing the bed material circulation. On the other hand, only black box models with uncertainties in their model parameters are available for model-based control design. The presented control algorithm uses a model predictive controller considering known uncertainties in the model parameters and drives the process in a region with the lowest model uncertainties. This results in an improvement of the closed-loop performance when the actual plant deviates from the internal model used for the model predictive control predictions. Simulations show 66 % less offset from the design trajectory with the presented algorithm when compared to a standard model predictive controller.
en
dc.description.sponsorship
FFG - Österr. Forschungsförderungs- gesellschaft mbH
-
dc.language.iso
en
-
dc.relation.ispartofseries
IFAC-PapersOnLine
-
dc.rights.uri
http://creativecommons.org/licenses/by-nc-nd/4.0/
-
dc.subject
Model predictive and optimization-based control
en
dc.subject
Process control applications
en
dc.subject
Model uncertainties
en
dc.subject
Control allocation
en
dc.subject
Dual fluidized bed gasification
en
dc.title
Minimum-Variance Model Predictive Control for Dual Fluidized Bed Circulation Control
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.rights.license
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
en
dc.rights.license
Creative Commons Namensnennung - Nicht kommerziell - Keine Bearbeitungen 4.0 International
de
dc.contributor.editoraffiliation
Tokyo Institute of Technology, Japan
-
dc.contributor.editoraffiliation
Kyushu University, Japan
-
dc.contributor.editoraffiliation
Tokyo Institute of Technology, Japan
-
dc.contributor.editoraffiliation
Tokyo Institute of Technology, Japan
-
dc.relation.issn
2405-8971
-
dc.description.startpage
2701
-
dc.description.endpage
2706
-
dc.relation.grantno
881135
-
dc.rights.holder
2023 The Authors
-
dc.type.category
Full-Paper Contribution
-
dc.relation.eissn
2405-8963
-
tuw.booktitle
22nd IFAC World Congress. Yokohama, Japan, July 9-14, 2023. Proceedings
-
tuw.peerreviewed
true
-
tuw.book.ispartofseries
IFAC-PapersOnLine
-
tuw.relation.publisher
Elsevier
-
tuw.relation.publisherplace
Amsterdam
-
tuw.project.title
Comprehensive Automation, Digitalisation & Optimization of Renewable & Sustainable SNG-production